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SUMMARY

In many problems arising in connection with designing servomechanisms

and similar systems one has to solve

2

dx dx +
m + ¢ — +kx =D
E;? dt

with the discontinuocus forcing term tD , and to find a transition or
switching curve in the phase plane so that solutiens reach the zero state
in minimum time, :
This problem arises in designing the systems so as to obtain optimum
performance, and is therefore of considerable practical as well as mathe-
matical interest; but very little work has previously been done on it, and

that mainly from a physical rather than mathematical point of view.

In this thesis there is given a complete solution of this problem.
The treatment is much more lengthy than one would expect, because it has
been necessary to break the problem up into cases; none or the general
methods available in the literature apply. The final result is given in

Theorem 10, page 63.

In addition we have recalled the situation that occurs when the
switching curve is linear. We have also, at the end, touched upon certain
problems that arise when the equation is nonlinear, notably of the wvander Pol
tyvpe. This case, however, is so much more complicated than the linear case

that no attempt has bcen wmade to give a complete solution.
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I. INTRODUCTION

A simple example will serve to illustrate the kind of physical situa-
tion in which the central problem of this paper arises. Consider. there-
fore, a servomechanism which consists of a motor, a source of power, and a
feedback circuit, We shall suppose that the purpose of the servomechanism
is to hold the output of the motor constant, say at the value Vo where
to fix the ideas we shall suppose that the output of the motor is measured
in terms of the angle y of the rotor with respect tc some fixed reference

y = Jo
r -
£ y
POWER ~ | FEEDBACK | . |, ooop -
SOUHCE CIRCUIT (LOAD)

position. The feedback circuit is sensitive to errors in y , i.e., to the
quantity y - Yq 0 and its object is, upon sensing such an error, to apply
to the motor an input the effect of which will be to tend te nullify this
error. The input to the motor is denoted by f , and will be supposed to
depend on x =y - Yo and the first derivative with respect to time of this

quantity.

x
The differential equation for such a system can be taken toc be

1 & +R§%=K'f(x,g—:)

2
d™x dx _ . dx
Id—t’z*Ra'E‘“("'—dt) (1)

where I 1is a constant representing the moment of inertia of the rotor,
R is a constant representing various sources of energy dissipation in

the system, and K is the "torque constant.” For a given motor (so

¥ See, e.g., James, Nichols, and Phillips: Theory of Servomechanisms
(1947}, g+ 1L.

R-L69
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that I, R, K are fixed) the crucial element in this equation is nat-
urally the function f , which is determined by the design of the feedback

circuit and by the strength of the power source. \

The problem to be considered here arises when one puts a further as-
sumption on f , namely the assumption that this function can take on only
the two values :B , where B8 1is a certain positive constant. This situa-
tion occurs when the feedback circuit acts simply as a swiich (relay) which
applies to the motor the full strength of the power source either directly

(#8) or after inverting its polarity (-3). This scheme has the prima facie

advantages that (1) the feedback circuit, since it no longer needs to yield
a continuously varying output, can be vastly simpiified; and (2) it wonld
seem likely that, by always using the full strength of the power source,
one should be able to smash any transient errors to zerc more rapidly than
by any other means. For the first reason, such servos are in fact exten-
sively used; but it seems to be the cpinion of many experts that the second
reason is not sound, for such an intense, "bang-bang" servo is too crude to
give a delicate response, and is prone to display several kinds of highly
undesirable behavior: high-frequency. low-amplitude oscillations ("chat-
tering"), medium-frequency oscillations of constant or increasing amplitude
("hunting"), and others. But naturally all this depends on the character
of f , and there is no reason to deny the possibility that there may exist
some function f or class of such functions which would avoid these un-~
pleasant phenomena and, in fact, give excellent performance. It will be
preved below that there do exist such functions and that there even exists
a unique such function f which gives the best possible performance, where
"best possible™ has a certain natural and definite meaning. This will in-

deed be shown for the more general equation

m 2—% +r —+cx =Df (x,%%) s (2)
dt i

dx +
where m , r , ¢, and D are constants and f (x,af) = -1, This equa-

ticn can be put into one of Lhe three simple forms



dhu du i du +

d—-g“?bﬁ"u:‘#(u,a;), ¢ =-1, (21)
T

dpu du _ du _ o+ .

g:? + b 'd_.; = Y (u,a;) ’ \P = =1 N (d“)

d2 du d + |

d—% + 2b a; - u 6 (u,é%) [ 9 = ‘1 s (2"‘)
T

tv choosing the proper units for time (t) and error (x), according as ¢
is positive, zero, or negative. (The constants m and D are assumed to
be different from zero; it is nc restriction of the generality to suppose
that they are both positive.) For instance, to get (2') from (2) when

¢ >0, put

olo

u , t =\/f§-r sy b= %

~
n

The problem which will be treated in this paper is:

In
2
s () - 4(F) 2

where g(x,y) 1is a given function of class Cl and ¢ (x,y) is a2 function

which assumes only the values =1 » how should ¢(x,y) be chosen so that
= )

" dt
reaches the state x =0, x = 0, and in fact reaches it in less time than

the solution of (3) for any set of initial conditions (xo,io) (i

for any other choice of ¢ (x,y)?

(In terms of our mechanical example, this means: how should the feed-
back circuit be designed so that if the output suddenly undergoes a dis-
turbance which results in a certain error and rate of change of error, then
these two quantities are brought back to zero simultansously and as rapidly

as pessible?)

A restricted form of the problem has been thoroughly studied by a
group of people represented by I. Fliigge-Lotz and K. Klotter (see the

R-L69
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bibliography); they treat the equation (2') with O < b <1 and assume that
¢ has the speciai form

@ (x,y) = sgn(Kx + My)

where sgn 1is the function whose value is +1 for positive argument and
-1 for negative argument, and K , M are constants. Their results will
be outlined in TI, where it will appear that in this case the problem as
stated above is insoluble and that the problem of choosing the '"best" ¢,
j.e., the "best" values for K and M, becomes one of avoiding as many
undesirable phenomena as possible. The "best"™ ¢ so determined indeed de-
pends for its efficacy on the assumption that the equation (2') gives an
essentially incomplete description of the physical situation, that in fact
"time lags"™ occur. D. McDonald (McDonala (1)) has discussed the problem
for the equation (2") with ¢ again general and has stated the correct re-
sult for this case, on the basis of a heuristic argument. Except for these,

no results have been given for the problem stated above.

The first principal new result of this paper will be Thecrem 1, which
greatly restricts the class of functions ¢ (x,y) which one needs to con-
sider in seeking a solution; then, on the basis of this theorem, the problem
is solved for all linear g(x,y) . After this something is said abcut the
nonlinear case, and the paper concludes with brief discussions of some dis-

tinct but closely related problems.

It should be remavked that the problem admits of various generaliza-
tions, for none of which significant results are known. For example, one
can consider a higher order differential equation, say of order n {(n > 2)
and require that on any solution the quantities x , %% ,...,qkﬁ (k < n)
should at some instant vanish simultansously and in the shortest possible
time; or cne might consider systems of equations, each involving a dif-
ferent function of the type ¢ (x,y) , for exanmple:

-

Z
da'x dx Qy) - dx d )
‘d_tg".gl (X:E{)Y:d{ ¢l (x!'dT’y,a%
Z ) )
dy (. & t’iy), dx dy)
z + g2 kx"d_t.’y’dt' = ¢2 (X,'d'{_:,y,a-g o

j=h

t




(This would represent the problem fcr a mechanical system with two degrees
of freedom with coupling.) Problems of a different character arise when

one remains with the equation (3) but supposes that the externally caused
errors are not of the simple, square-wave type we have considered, but of
some more intricate but statistically describable type. In view, however,
of the difficulties involved in dealing with the simpler problem here dis-
cussed, the possibility of obtaining significant general results for the

more complicated problems seems, at present, rather remote.

Terminclogy

The equation (3) is equivalent with the system

dx
T

(L)
%% = ¢(x,y) - glx,y)

where g(x,y)scl and ¢ (x,y) = 5.

Suppose for the moment that ¢ (x,y) = +1 . Then the system (L) has
a unique soliution through every point (xo,yo) of the plane; in other words,
the family of curves defined by (L) wita ¢ (x,y) = +1 covers the entire
plane exactly once. This family of curves will be called the P-system

(P for positive), its curves P-curves, and the arcs of its curves P-arcs,

In the same way, when ¢ (x,y) = -1, one gets another family of curves
covering the plane; this is the N-system (N for negative) and N-curves and

N-arcs are defined correspondingly.

A positive direction of motion (an orientation) on each P- or N-curve

iz automatically defined in terms of ¢ .

Now if ¢ (x,y) d1s allowed to be as before, i.e., any single-valued
funetion whose domain is the entire plane and whose range is confined to
the values of i'1  the classical theory of differential equations does not
provide a definition Yor the noticn of a solution of (4). If ¢ (x,y) is
simple enough it becomes clear how such a soluticn should be defined; but

when ¢ (x,y) 1is general this is not so clear, and some care must be taken.

R-L69
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The definition which follows ssems best. It is expressed mainly in geometri-

cal terms, but the translation to analytical language is easy.

Suppcse that P, (xo,yo) is the poini from which the solution is

sought, and suppose <#(xo,yb) = +1 . Then one of the three following mu-

tually exclusive possibilities must be realized:

(i) There exists a P-arc beginning at P, cf positive length along

wnich & (x,y) = +1 .

(ii) The condition (i) is not satisfied, but there exists an N-arc from

P, along which ¢ (x,y) = -1 (excluding P, ).

(iii) Neither (i) nor (ii) holds.

If (i), either there exists a first point after p, °n the P-curve
from P, at which ¢ (x,y) changes sign. or there does not. If there does,
the solution is defined to begin with the P-arc from P, to this point pl .
If there does not, the solution from P, is defined to be that part of the

P-curve through P, which follows p_ (the P-semicurve from P, ).

If (ii), the preceding paragraph should be applied with I in place
of P.

If (iii), no solution from P, is defined.

Cases (i) and {ii) thus ieaa either to a definition of the entire solu-
tion from P, s o7 to a definition or tne solution up to sore definite point
By = (xl,yl) . In the latter case, tne above process should be repeated,
with P, in place of P the letters P <2 N interchanged, the numbers
5] interchanged, and the phrase M"excluding 1 " added at the end of (i).
Tais will lead to the same «richotomy: either the zolution is not defined be-
yond p, , or it consists of a whole N- or P .semicurve beginning at Py s OT
it Toi.ows Ty with a .iefinite arc PyP, - Then the whole proacess should
be applied tc p, (when this peint occu;s; otherwise there is nothing left
to do); but now P . N . and lLl.should be in their orieginal places. This

either accounts for the resi of the solution. or leads to a point Pj like

" 1o be precise, let x(t) , y(t) represent the P-curve such that x{(0) = x_,
y(0) =y , and Jet T dinf (tl t> 0, $[x(t),:t}] = -1} . Then
the "fir§t point" mentionad is (x(t),y(71)) .
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Py which should be treated like Py ; and so on. The whole curve obtained
in this way is, by definition, the solution of (L) from P,

Ir ¢(xo,yo) = -1 , the solution from Py is dsfined ccrrespondingly.

If each of the points p_ (n =0, 1, 2,...) is assigned to the adga-
cent P-arc if <¢(xn,yh) = +] , the adjacent N-arc if ¢>(xn,yn) = =1,
then the salution of (L) from p, consists of a countale (possibly finite
or even vacuous) well-ordered sequence of alternating P- and N-arcs such
that the initial point of the first arc is P, s the terminal point of each
arc is the initial point of the next, and ¢ (x,y) = +1 on the P-arcs,

-1 on the N-arcs,

The solution of (4) from a point p , if it exists, is unique. This

follows at once from the definition ana the fact that P- and N-curves are

unique.

It is also easy to see that if A is the solution of (4) from p , and
p' is any point on A , then the solution from p' is that part of &
which follows p .

From these facts it follows in turn that a solution cannot intersect
itself at a peint p unless it is periodic beyond p . (Here a solution
can be "periodic beyond a point" without being completely periodic, despite

the uniqueness, because our solutions are defined only unilaterally.)

A point on a solution which is the terminal point of a P-arc and the
initial point of an N-arc will be called a PN-corner. NP corners are de-
fined analogously.

ITI. LINEAR SWITCHING

Linear switching occurs when ¢ (x,y) = sgn(Kx + My), i.e., when
¢ (x,y) = 1 in one of the half-planes determined by the line Kx + My = 0O

ana -1 1in the other. This case for the equation

[oB
»

+x = ¢(x’%%) (0 <b <1) (21)

“d

+*

N
Sl&

* If, e.g., ¢>(xn,y ? = +1 while the two adjacent arcs are both N-arcs,
P, is to be regaraed as a degenerate P-arc.



has been thoroughly discussed in several papers (Fligge-Lotz (1),(2);
Fliigge-Lotz and Klotter (1)). The summary of their results given in this
section (based on Fligge-Lotz (2), Chap. l4) will serve the double purpose
of showing how much can be done with such a ¢ (x,y) and of displaying

some of the unwelcome phenomena that can occur in such problems.

In this case (L) becomes

dx _
Y

(5)
g% = -x - 2by + sgn(Kx + My) .

The constant b is taken as fixed, and the focus of attention is the
pair of constants K , M . We shall suppose that they are both different
from zero; what happens when either of them vanishes is essentially the
same as what happens in one of the other cases. There will then be four

cases to consider, as tabulated:

M=>0 I III
M<O0 II v

As is well known, the equations for the P- and N-curves belonging

to (5) can be explicitly computed; they may be expressed in the form

x(t) = e-bt(Aeiat . Be-iat) + 1
. , (6)
(t) = -~ [(b - a1)2e™% + (b + a1)Be™i0F)
ﬁhere a = +\/i - b2 and
A= 5%1; {y(O) + (b + ai) [x(0) * 1]} . B=4a . (7)

Wherever an equivocal sign occurs, the upper sign pertains to the P-system,
the lower to the N-system. These equations represent spirals spiralling

into the foci (11, 0).



A solutiocn of (5) can thus be cbtained explicitly in terms of a se-
aquence of formula pairs (6), defined on successive intervals of time, each
representing that part of the solution between two successive zeros of

Kx + My.

Case I. In this case the "switching line" Kx ¢ My = O passes
through the second and fourth quadrants. To the right of it, ¢ (x,y)=+1;
to the left, -1. Thus a solution consists of a sequence of arcs of spirals,
sach with its focus on its own side of the line Kx + My = O and its ends

on this line,

The condition for the existence of a periodic scoluticn is that there

should exist (say) a P-arc of the type described whose end-points are

CASE I

equidistant from the origin; ror then, by symmetry, there exists an N-arc
on the other side of the switching line joining the same two points, and
these two arcs together form the periodic solution. W= shall see below

that a periodic solution can occur in our case,

Let SP' SN be the points on Kx + My = 0 where a ©- and N-curve

respectively are tangent; let RP and RN ve the last intersections pre-
ceding SP and SN with the switching line of the P- and N-curves through
these points, SP and SN are symmetric with respect to the origin, as
are RP and RN . Suppcse that b, K, and M are such that RN is out-
side the closed segment S?SN i then the situation is as shown in Figure A
(next page). s soluticn starting sufficiently near the segment SPSN will
move away frow the line in one direction or the other -- according to the

R-459
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switching line at all. Since solutions can only start near SPSN , but can-

not cross it, the points of this scgment are called start points. {(Strictly

speaking, ¢ (x,y) 1is not derined in this segment, so that one cannot sgeak
of a solution starting on it.) Also, since any solution starting in this
manner does not return to the switching iine but merely spirals uown to one

focus or the other, such points are alsc rest points; the control represented

ty the function ¢ is at rest on the solution from such a point. It is

easy to see that the points of RNSP and SNRP are also rest points, but
net start points. In general, irrespective of the values of b, K, and
M (for Case I), the segments S RP and RNSN consist of rest points and

P

the segment SDS‘\I consists of start points, as one can easily convince him-

self, .
In the case illustrated in Figure A no periodic solution can exist;

for it can be snown that every P-arc wnich lies tc the right of the line

Kx + ¥y = O and has its ends on this line also has the property that its

terminal pecint is nearer the origin than its initial point; thus the condi-

tion for a periodic soluticn can never be satisfied.

If, however, Rﬁ and RP are on ihe segment SPSN (Figure B), then
Lhaorz elists a periodic sciution. This may be sceen as tollows: the parti-
cular P-arc RPSP vegins nearer tne origin tnan it ends, by assumptiong

out P-arcs which begin sufficiently far from the origin on tne switching
line have ine reverse property; tnerefore, by continuity, some intermeciate
P-arc of this type must begin and end at the same cistance from the origin;
and this is exactly the condition for a periodic soiution. Extended analysis
bears this cut, and shows that the periodic soluticn is unique and orbitally
stable. All solutions beginning outside the periodic solution spiral onto
it, and those sclutions which begin inside the periodic coluticn but outside
the shaded area (which represents rest poirts) also spiral onto it. When
there is no periodic soiution, as in Figure A, &1l solutions have finitzl
many corners and then c¢piral down with no further c.rners to one of the foci
(fl.()). Obviously, none of these kinds of behavior is welcome in terms of

the prcblem at hand.
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Case II. This case differs from the first in that the switching line
Xx + My = O now passes through the first and third quadrants. The arcs

which occur in solutions are as in Case I. No periodic solutions occur in

this case. Let RP ’ RN , SP . SN be defined as before; then the pcints
RP ’ SP , 0, SN ' RN lie on the switching line in this order. The inter-
vals RPSP and SNRN are eas.ly seen to consist of rest points; but on
the interval SPSN a new phenomenon occurs. Consider any soiution which

reaches this interval, say at the point E. What does the solution do at

y
/Kx + My =20
\\
/’_\\ \\
* // \\ / \
/ A g \
\ \
// N \ SP \
- [ +1
f - A1 | X
! 41N //
\ \
\ //éN \ /
\ —_—— N /
\ ~ s

CASE II

this point? It shoul& have a PN-corner at E , for it has reached a
point where ¢ changes sign; but the K-curve from E goes back into
the same half-plane from which the solution entered E , and on this

side a solution can contain only P-arcs; on the other hana, the sclution
certainly cannot follow the P-curve through & beyond this point., Thus
the solution is not defined beyond E; it ends at E . For this reason,
such a point is called an end point. Ir a manner oi speaking, end points
are inverted start pcints and, like start points (but uniike rest points)

can occur on the switching line only.
Any solution starting outside the region just considered spirals in

toward the origirn until it reaches a point on the interval RNRP , beyond

which its behavior is determined by the above considerations.
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In practice, due to mechanical traits of the physical system involved
wiich prevent it from obeying our idealized hypotheses exactly, there arises
a time lag, this means that a solution meeting the line Xx + My = 0 ac-
tually proceeds for some distance beyond it before it has the corresponding
corner. In Case I such a time lag, provided that it is not too large, does
not affect the essential behavior of the system; such a system might there-
fore be said to be "structurally stable with respect to time lags."™ But in
Case II the presence of a time lag does make a difference; for consider a
solution entering an end point; because of the time lag, it no longer ends
there, but proceeds for a certain distance beyond and then has a corner,
where a solution is still defined., From this corner it crosses the switching
line in the reverse direction, moves for a short distance beyond, has another
cofner. and so on, The successive intersections of such a solution with the
switching line move away from the origin, so that sooner or later one of the
corners lies in the set of rest points, and from this corner the solution
preceeds to spiral down, without further corners, to the corresponding focus.

(See the picture below.)

CASE II WITH TIME LAG

ihe situation in Case II can thus be summarized as follows: In the ab-

P - . i
sénce of time lags, every sclution either terminates in an end point on S_S

PoN?
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or it eventually spirals down to one of the two focl (:1,0). In the presence
of a time lag, all soluticns behave in the latter way. Thus Case II is alsc

unfavorable from our point of view.

‘Case III. In this case the switching line lies as in Case II, but the
arcs which occur in selutions now belong to spirals about the focus on the
side of the line opposite from the arc itself. In other words, P-arcs occur
on the left, N-arcs on the right. In this case 2 stable periodic solution
always exists, and it dominates the whole situation, for all other sclutions

spiral onto it.

CASE III
That a periodic solution exists can be seen as follows: consider the

two arcs BC and B'C' , where B lies

_l_ very near the origin; then

. _—
\t>6:// 0C - 0B >0

But. by the character of the spirals,
if B' is far enough out

yd oC' - OF' < U .

Thus, by continuity, there must ve an

internediate arc !"(" such that
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OCh - GB™ = O 3 but this, as pointed out earlier (p. 9), is' exactly the
conditicn for the cccurrence of a periodic solution. An extended discus-
sion of such periodic sclutions can be found in Bilhars (1); quantitative
‘information about the particular periodic sclutions arising here, for A
varying values of the parameters, are glven in Fliigge-Lotz (2).

The behavior of the solutions within the periodic solution is simple
enough. It is clear that, if Sp and Sy are the points of tangency defined
as bafore, the segment SPSN consiste of starting points. A solution
starting from such a point (in either direction} simply spirals out to the
pericdic solution; and since the totality of solutions obtained in this
way covers the interior of the region bounded by the periodic solution,
ihere ‘are no other éolutions to consider. (See the picture below.)

o

CASE III NEAR THE ORIGIN

Thus all solutions spiral onto the periodic sclution and this, from
the point of view we have adopted, is also unfavorable. It may be seen that
in this case, as in Case I, we have "structural stability with respect to
time lags"; i.e., the presence of a small time lag would not change things

essentially.

Case IV. In this case the switching line is as in Case I, the arecs
of solutions as in Case I[[. It may be shown that no periodic solution

can exist in this case; in fact, every arc with its ends on the switching
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linc has its terminal point nearer the origin than its initial point, and
the condition for a periodic sclution cannot be satisfiled.

CASE IV WITHOUT TIME LAG

In this case the segment S5, consists of end points, and by tracing
the solutions which end on it backwards one can see that these cover the

the switching line.

But here again, as in Case II, the presence of a time lag makes a
difference. The time lag makes no difference of importance until the so-
lution inrquestion reaches SPSN; then, instead of ending, the solution
proceeds for some small distance beyond the switching line, has a corner,
recrosses tne switching line, has another corner, and so or. It may be
gseen that the successive points of crossing obtained in this way have the
property tha: each is closer to the origin thdr its predecessor, until one
of them 1Z.es on the other side of the origin. After this nas happened the
solution oscillates Around the origin in a more or less irregular way, but
with a high mear Irequency and small mean amplitude. This is the most
favorable of the possibilities so far considered, fur every solution moves
into the origin with ihe passing of time, and this irrespective of the mag-
nitude of the constiniz b , K, and M . But the manner in which it does
so is unsatisfactecry, for it involves a rapid fluctuation in the sign of $
("chattering") which, in general, continues indefinitely.
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Thus, at best, linear switching leads to solution behavicr which, toth
qualitatively and (as we shall see) quantitatively, is far from perfect; it
will be shown later (Theorem 7) that all its defects can be avoided by taking

a different kind of ¢ .
5

N ..
AN

L

CASE IV WITH TIME LAG

ITT. THE MINIMAL THEORY; GENZRaL CONSIDERATIONS

We now return to the problem stated at the bottom of page 3. If the
second order equation (3) is replaced by the equivalen® first-order systcm
(L), the problem may be described as that of finding a function ¢ (x,¥)

such that for any point p in the x,y-plane the scluticn from p of
dx 4 + 1 ,
TV s 6% = ¢(x,¥) - g(x,y) (¢ - 1, g ¢ ¢ (1)

has the following properties:
(i) it passes through the origin (x = y = 0);

(ii) the lengtn or time necessary to move {rom p to the origin alcng
the solution from p is minimal with respect to ¢ ; i.e., no other ¢

could make this time shorter.

{The parametrization of a solution in terms of t is naturally in-
duced in the obvious way by the known parametrization in terms of t of
its component arcs; thus the "time" required to move from one point on a

solution to another which follows it is a well-defined quancity.)
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The object of this section is %o study the problem in this general
form. It will first be shown how the problem is equivalent to one of a con-
ceptually simpler character, and then {in Theorem 1) it will be shown that

this problem in turn can be greatly simplified.

It has been pointed out that a solution of (L) consists of a sequence
of alternating P~ and N-arcs, the initial point of the first being the ini-
tial point of the solution, and the terminal point of each being the initial
point of the next. Our point of view will be to consider, for an arbitrary
point p 1in the plane, the class of all curves of this kind which begin at
p and pass thrcugh the origin; and wur purpose will be to find in this
class a curve along which the time necessary to reach the origin is shortest.
Thus we make the following definitions (the function g(x,y,) . and there-
fore the P- and N-systems, being fixed):

A path from the point p 1is a finite or countable, well-ordered se-

quence of alternating P- and N-arcs such that:

1) The sum of the 1engths* of the arcs is finite (=7 ),

2) The initial point of the first arc is p .

3) The terminal point of each arc is the initial point of the next.

L) If there are finitely many arcs, the terminal poinﬁ of the last
arc is the origin; if there are infinitely many, then

x(t)=~0 and y(t) =0 as t—=-— 1 ,

the curve composed of the arcs being parametrized in the obvious way in
terms of the parametrization of the component arcs.

5) No two of the arcs intersect.

(In order to avoid a conflict between 3) and 5), we regard each arc
es containing its initial point but not its terminal point; this convention
will have no effect on the time-length characteristics of paths, and there-

fore does not really restrict the generality of what follows,)

- "Length," "longer," and similar expressions should be understood to refer
to time, not geometric length, here and throughout what follows.



A péth from p can tnerefore almost be described as a curve which
could occur as-that part of a solution from p (for some ¢ ) which con~
nects p with the origin. "Almost,™ because 5) need not hold for a solu-

tion of (4). This point will be cleared up presently.

A path from p which is not longer than any other path from p will

be called a minimal path from p .

In order to solve the problem stated on page 17 it is sufficient to

find a2 unique minimal path from each point p .

Namely. one needs only to'define ¢ (x,y) = +1 on P-arcs which oc-
cur in the minimal paths, and ¢ (x,y) = -1 on the X-arcs which cccur in
the minimal paths. (¢ (0,0) is to be left undefined, or it can be given
either value.) Such a ¢ (x,y) automatically yields the minimal paths i

solutioﬁs,'and the minimal path from a point:is, by defirition, the shortest

" possible solution connecting p with the origin. " Twc things must be veri- .

fied: (1) that this method defines ¢ (x,y) uniqueiy at every point eXCept""

the origin, and (2) that notning is lost by leaving out of consideration

. those possible solutions for wanich 5) rails.

To verify (1), oﬁserve first_tﬁatrevéry point p must lie on at least
one minimal path, namely the minimal path which tegins at p . Thus ¢ (xy)
is defined everywhere, 1 there were some point at ﬁaich'it failed to be
unique, then this point p would need to lie both on an N-arc belonging to
‘one minimal path Aa (from the point a'? and on a P-arc beionging to an~
other minimal path A b (from b ). Denote those parts of Aa and Ab wiic.
lie between p and the origin by A!a and A'b respectively; then their
~ time lengths r(A'a) and f(A*b) stand in some relation to each other,
say T (a' ) S t(A' ). Then T (3 - Ay ¥ pr) €t (a) . A - flb v
may not be a true path (for it may cross itself), but a true path B, ‘may
be obtained from it by cutting out whatever closed loops or retracings it
may contain; and cbviously r(Z%) € r(Ab), wihich contradicts the assump-~

tion that Ab was the unique minimal path from b .

1o check (2), it will suffice to show that any curve A which might
occur as a solution conrecting p with the origin and faling to satisfy
5) can be replaced by another such curve, at least as short, which satisfies

5) and is therefore a path. Let A be as described, and let &' Dbe the

R-L69
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path obtained from A by cutting off all of & beyond the first intersec-
tion of this curve with the origin, A!' contains the origin just once, and
ends there; since 4 is not longer than A , it is enough to show that At
satisfies 5). Suppose the contrary; if A!' intersects itself at a point

q beyond whicn, by page 7, it is therefore periodic, it follows that A!
containz the origir at least twice: once foliowing the second passage
through q (for A' ends at the origin) and therefore on the period con-
necting the first passage of A' through q with the second. This iz a

contradiztion,

The problem with which we shall actually be concerned is therefore
that of finding a unique minimal path from any point p , givern the func-

tion gi{x,y) .

A path will be called canonical if it contains no NP-corners (:see

p. 7) above thé_iuaxis'éﬂd’no FN-corners below.

Theorem 1. Given any path & from p which is not canonical, one

can find a canonical path from p which is shorter (in terms of time)
than A4, '

Proof. (Iﬂ saying that a corner lies above or below the x~axié. we
mean that *he arcs adjacent to the‘corn?r are, for values of % suffi- "
cienfly near *he valus corresponding *5 the somer itself, above ar below
the x-axis- respectively; the cornar itsélf, regarded as a point, may £hus

lie on the axis.)

Theridqa of the pfoofris simpes given,,say; 4 path with the NP--
corner p - abors the x-axis, one denotes by p: either the last commer of
the pa*h praceding p orrthg last intersestion preceding p of the path
7 with the x-axis (wnichaver iz nearer p ),
and denotes hy p" the corresponding point

with "foi’owing" in place of "preceding" aﬁd
"Pipst™ in piace of Miast.," One ther draws

the P-~urve forward from pe and the N-curve
biuizkward from p" , tharesby obltaining a four-

5ided figure a, shown. If one now modifies

the given path by replacing p'pp" by p'p"y,
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tiie NP-corner p is removed, no other such corner is introduced, and the
path is shortened. To see this last fact. note that. by (L),

dx

T (p'pp") = f R T (p'phph) = j

dx
prppn p'Pp"

(These two integrals must converge, for the quantities t(p'pp") and
t(p'p"p") are obviously finite.) However, y is greater {for a given
vajue of x ) on p'p"'p" than on p'pp" ; therefore the second integral
is smaller than the first, as was claimed. Thus if one applies this pro-
cess to every WNP-corner above the x-axis, and *“ne corresponding process -
to every PN-corner below the axis, one obtains a canonical path shorter

-than the given one.

Two things must be proved: (1) that it is 2lways possible to con-

 struct the "quadrilateral® of the type shown; and (2) that the process

described does not produce any self-crossings, so that a true path is in
fact obtained,

ﬁeti ﬁ ’ p;r.'and p" be as described above; if the initial point
of a path is regarded as a corner, p' always exists, and 'p" always
exists since the p;th goes to the origiﬁi It willrbe shbwn first that .
the P-semicurve [ beginning at p' passes over p'pp" and crosses the
vertical line through p" . That [ moves to the right as long as it
remains above the axis follows from the first equation in (L). Sﬁppose
that Il is parametrized by t in such a way that t =0 gives p' ;

then [ has one of the following two properties:

S

(i) D goes arbitrarily close to the x-axis as t ~oo (i.e., it

either crosses the x-axis for some t >0 or 1iﬂ;iﬂ£ y(t)[on 0] =0 .

(ii) I goes to infinity in the sense that

sup {xl (x,y) € n} = +00

For assume that (i) is false; then there exists a number € > 0
and a value t >0 of t such that for t >t_, y(t) (on 1] > €,

Since %% =y , this gives
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t
x(t) = x(to) +f y( t)dr > x(to) + Ae(t - t,o)*oo as't -
t

0
so that (ii) holds.

Since, as t increases, [I moves steadily to the right, it is clear
what ]l must do; it must either move off to infinity as in (ii), or cross

the x-axis at-some point, or tend -to some point on the x-axis as t -« .

[1 starts off from p' above p 'pp" , for in the upper half plane
the P-curve through a point always has a greater slope there than the N-
curve through that point, and even if p' 1lies on the x-axis (whereupcn

the two slopes are Mequal! --- both int'inite) the radius of curvature of the

P-curve at -p' 1is greater than that of the N-curve. (A1 this follows fram N

()3 in parficular, the fact that we can *alk about radii of curvature fol-
lows: from the fact that g(x,y) € Cl,, so that x(t) and y(t) -~ the func-
tioﬁs defining “H - have'éoﬁtinuous second derivativeér)‘" cannot cross
ths N-are P’ P , by what was just said about slopes; it cannot CrOoS ‘the
P-arc pp" , for P-curves are unique; and it cannot tend as t ——® to
either of the points p or p" (one or both of which may be on the x-axis)
for this would imply that the point concerned would be a singulaf_point of
the~P~system. which would in turn belie the fact that both points belong to
the ordinary finite P-arc pp" . Thus all that was claimed fbr I is true.

-The correspondihg argument can be applied to i ,qthe N-zemicurve ob-

‘tained by follokihg the N-curve through p" backwards, and it turns out

that it too lies above p'pp" and, in-particular, crosses the vertical line
through p' . Thus II and N musﬁ intersect at least once. That they in-
tersect only once may be seen in several ways, the simplest of which perhaps
is to observe that if they intersected twice (with no other intersections
between), one of the intersections would involve a crossing with the wrong
inequality between the slopes. Thus we obtain the unique intersection p™t
and the "quadrilateral" sought.

This proves (1) on page 21, To prove (2), we note first that in the
process just discussed (and its complement for the lower half-plane) the
upper and lower half-planes are treated separately, so that in looking for
possible self-crussings introduced by this process we need only consider

LISt ]

ek
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(say) what happens to thoée parts of the original path which lay above the
x-axis, Let H1 and H2 , then, be any two parts of the original path, '
each contained between successive points where the path crosses the X=-axis
and in the upper half-plane. It is clear that the process for removing
NP-corners cannot introduce self-crossings in either of the separate pieces
H, or H, ; hence it is only necessary to show that the process can not

1 2 :
cause H, to cross H2 « Since Hl and ,H2 do not cross, their epds

1
a; bl R a2 s b2 on the x-axis must lie in one of the following orders:
(l)a1bl!a29b2.(2)al)32!b2’b1;(3)a23819b19b2;
(L) a, 2 > 3y s b, . (1) is essentially the same as (L), and (2) as (3),

SO we con51der only (1) and (2).

Our process has the property that it leaves the points where the given

oath crosses the x-axis unchanged; no such points are rémoved, and none are

—1ntroduced Therefore the curves H.' and Hz' -belonging to the final

1
path and obtained from H, and Hz_ by the process have the same ends on

the x-axis as before. No& in case () there is ﬁothing further to say, for.
Hi' lies entirely over the interval (éi,bi) (i = 1, 2); since these inter-
vals are disjoint, H,' and H,' cannot intersect. In case (2), H)! and
- H,'must beas shown; each H.' consists
of a P-arc followed by an N-arc (one of
which might be vacuous). Suppose they
intersected; say the intersection oc-
curred on the arc agc2 . Then, since
(both of

cannot intersect
them being P-arcs), a,, ,C, must inter-

32C2 . alcl

sect clbl by the previcus argument about slopes, these twoc arcs can only

intersect once; therefore czb2 must intersect clbl y Since b lies be-

" tween a, and ~bl . But this is impossible, for these are both N~urcs.,

1
The same line of reasoning applies if c2b2 is assumed to intersect 810y

Thus Hl' and “H2f are disjoint, as claimed; and this completes the proof

of Theorem 1.

Corollary. In seeking a minimal path from a point it is only neces-

sary to consider canonical paths from that point.
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-curves at q .

For it follows directly from Theoram 1 that a path which is hinimal

with respect to the class of all canonical paths is also minimal with re-

spect to the class of all paths.

“rom this point on it will

therefore gg

‘tacitly assumed that all paths mentioned are canonical.

If g(x,y) has the particular property that g(-x,-y) = -g(x,y ) ,

there is more one can say.

For then, if in the equations

g(x,y) (L)

y= -Y ! ¢(X9Y) = e

dx a
TV, 3= blxy) -
we make the substitutions  x = -X ’
dX _ ay _
aT"“Y’ d+ q.l(‘{ Y) —g\}‘ Y)

i.e., equations of exactly the form

€L). This means that if p and q

are two points symmetrical with respect to the origin, then whatever can

be said about the P- and N-curves at

(E g., if it can be
must begin with a P-arc, it fol]ow"

must begin with an h-arc.,) -~

Since g(x,y) always has the

(homogeneous), and’ g(k;y) will be”

this observation will find extensive use,

p can be said about theN- and P-

oroved that a minimal path from p

at once that a minimal path from q

roperty m=ntioned when it is linear

o

f’this_t;p in most of what follows,

Any result obtained from an-

other by an appeal to i% will be said tu have been obtained by symmetry.

Iv. TdE MINIMAL TnDORY'

This sectﬂon begnnc the systematic

in IIT for the 1mportant case thut
suffice to suppose that,

-X + by , where i each case b is

section we study the: firs? of these;

‘given at the very outse* and, of cou

solution of the problem for b 2 0O

gix,y) = by

study of the prebiom discussed

gix,y) is lincar. By page 3,

g(x,y) has cne of the three forms by, x + by ,

an arbitrary real congtant. In liis
it arises from the physical example
rse, in many other ways. The correct

has been previously stated {McDonald

(1)), but without a convincing argument.

V(X,Y) , we obtain

it will

Brwhetvie §

o B
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The character of the P~ and N-systems associated with the equations

=l
fl
ed

ad
s a% = ¢(x5Y) - by

depends, of course, on the value of b ; but this much can be said: since
the left members (disregarding ¢ ) depend only on y , all the P-curves
can be obtained from any one of them by translation along the x-axis. The
same, of course, can be said for the N-curves, which are in fact obtained

from the P-curves by reflection in the origin.

The P-curves determined by the origin and (for b # O ) the point
(0,2/b) for representative values of b are sketched below; that the solu-

tions have the gualitative propefties involved can be'easily verified,

Tl

y= : '
/ b<0 | b=0 -1 " v>0

When b < 0 , something strange (bﬁt not unexpected) occurs: there

- exist points from which there‘gre no paths. More precisely, a path from

the point (xo,yo) exists if and only if |y | < b7t . For suppose

Yo < b <0 3 then

dZ _ o+ i ) .
T =21-by <-l-1

vy,

"

Vo

This means that once any curve, P- or N-, is below the line Yy = b“l it

stays below; thus no path from such a point could cross this line, as it
would need to do to reach the origin. Similarly for any point above the
line y = —b”l > 0 . That paths exist from any point between the two

lines will be secen below.
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When b 2 0, a path can be found from any point in the plane.

We shall denote by [ that part of the P-curve through the origin
which lies below y = 0, and by [I'™ its reflecticn in the origin. T~
is therefore that part of the h-curve through the origin which lies abovs

y=0.

Theorem 2. (g(x,y) =by.) Let C= TI''+0+ TI'. This is a simpls

curve which divides the plane in%to an upper and a2 lower part. The unigue

4

minimal path from any point p above C (and below y = -b =, if b <0)

is obtained by following the N-curve from p wuniil it reaches O([') and

then followin [ into the origin. IF 2ies below C and above
g Anto the oragin b

y = bt , if h < 0 ) the unique minimal path is given by following the

P-curve from p to C{[") anl then folowing [~ intec *he origin. (The
solution of the originai probl:iw is to take ¢ = -1 zbove C ard on
' +1 beiow C andon [ .)

» .

Proof. Note first that if pyg 1is an N-arc with p on the x-~-axis
and qr is the P-arc from q back to the axis, then t{pgr) , the total
time length of ihis pair of arcs, is a4 munolone increasing furnction of the

distancae batween p snd r , or equivalently of the arsa bounded by pqr

‘and the segment pr of *he axis; for t{pq) and 7 (Q") are both in-

creasing functions of ~yq . yq being the ordinate of q ; but tais in
turn is such a funchtion »f the two gquantitiez rentioned.

We shall denot2 that path from p wnich, accrording to the thecrem,
is minimal by & . The r2st of the prosf will be broker up irtoe several

parts,

'3

- - . ~ ) . -~ -
iizs on the positive hal® of the x axis, A& is the

A, If

anique minZra: path from p oo

~
Let ﬁr be any rath from p other than Ap o Bypage 2L, 5  zas

ny
ro PN--corners belnw th

e axls or NP-cornars awvocve, [t therefore starts oat
from p wi*th an N-arr pq , wnich w» may (se= helow) azzume tc b2 of posi-

b

5. From q the path folliows

[

tive lengih; gq ‘thereforz liss helow the ax
a P-arc qr which crosses the axiz, (If » wzr2 the origin, w=2 would
navi: A" ; andd 37 r Cay o oov below “he X axls elsewhars, it wWould be a

corner of the oxzludad *~pe.) Let tna2 intarseniion of g~ «ith *he x-axis
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be v . The N-arc of Ap fram r , say rq, , again crosses the axis or
ends at the origin, for similar reasonsy and so on. By continuing this
kind of reasoning, and recalling that Ap does not cross itself, one dis-
covers that Ap must be of the form shown. (To see what happens when the
initial arc of Ap is a P-are, think of v in place of p .) In order

for this path to reach the origin.
r

1 sooner or later oné of the points A
o Vo v]/mpl_ P must li: at or to t:he left of the
—-— \j origin, If 1 is that intersection
q
aj of Ap with the x-axis which immedi-~
a, : ately precedes a v, for which this

happens, then PV, is an arc-pair of the type discussed at the be-~
ginning of the proof, and q, is clearly lower than the NP-corner of Bp 3
hence T(Ap) > T (pnqnvn) > T(Ap) , which shows that Ap is the unique
minimal path from p .

B. If p lies below y =0 and above I' (and, if b >0,

above y = -b-l ) then the unique minimal path from p is Ap .

Suppose that Ap were a path from p such that r(Ap) 3 r(Ep) .
One can join p to the x-axis by following the N-curve through p back-
wards. If the point on y = O reached in this way is p' , then pp’ +Ap
is (after the elimination of any loops, etc., that it may contain) a cer-

tain path (1"101; necessarily canonical) from p' , say Ap' : then

[

T@,) €T(pp' +A) = T(p) ¢ T(A) S T(op!) + r(ﬁ'l;)

I

7 (pp! +KP) =Tl

,

‘and this contradicts the fact (from A) that ’Aup! is the unique minimal
path from p' .,

C. If p lies below y =0, to the left of I' , and, if b # 0,

above y = - 1bj -1 y then 3"_\ is the unique minimal path from p .
¥

* They cannot merely approcach O as a limit point, for this would imply
the existence of infinitely many pieces like ppqnvp 5 but each of these
pieces would be longer than the innermost one, so that the length of the
entire path would necessarily be infinite.
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Consider any path other than Zp from p ; it starts out from p
with an N-arc pq (necessarily lying entirely below y = 0 ) and from g
follows a P-arc across the axisj; but beyond this crossing, by the result
obtained from A by symmetry, we may suppose that the path simply goes to
apoint r on I'" and then follows

r '" into the origin. Let the inter-
) section of qr with the axis be v j;
r then -x_, and therefore t (vr0) , is
0 : a strictly increasing function of
v\_/p v {pq) ; likewise, since g% <0 on
: the N-curve from p, v (qv) s

such 2 function of t(pq) ; alto-
T gether r(Ap) is thus an increasing

function of 7t (pq) , and therefore
takes on its least value when <t(pg) = O ; but this gives Ep o

A,B, and C prove the theorem in the lower half-plane for every
case but that in which b >0 and p 1lies below y = -b"l . The proof
in B breaks down for this case because the N-semicurve ending at p
does not reach the x-axis; the proof in © fails because %¥ >0 on the
N-semicurve beginning at p . This bothersome case will be dispatched
by proving a sequence of statements:

Dy Any path from a point above [ and below y = bt (b > 0)

must begin with an N-arc which reaches ' .

Por if a path A = began with an N-arc which fell short of T (if,

_ in particular, it were vacuous),

r the succeeding P-arc could not
/\ enter the origin, but could only

/ cross the axie to the right of

! 0 and break off in a corner

-1  above. The N-arc from this point

must again cross the axis, but it,
as well as any P-arc following it,
stays above the line y = 7t 3

thus such a path could not get to
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the origin without crossing itself.

Dy. If p is 2 point below the line y = b7t (b >0), and Ap

is a path from p which starts along an N-arc pq , follows the P-curve

from q to I'” and then follows ['" into the origin, then (8 ) 1is
P

a strictly increasing function of 7(pq) .

Let the PN-corner (on I'" ) of Ap be r , and write x = t(pq) ,
p= z(gr) , o = tv(r0) ; then it is to be proved that adT()\-tp.+0')>0.
The best way to do this seems to be the following: it is easy to verify

that the P- and N-systems are given by the equations

bt

t+

x(t) = A +Be Ot 2 % t , y(t) = -bBe” % ,

where

+
o'l
e

e (s 3w . se-i(yo03

the upper signs giving the P-curves, the lower giving the N-curves. Using
these formulae and the lengths of the three arcs of Ap , one can get ex-
pressions for the values of the coordinates of the two corners of this

path, and of the origin regarded as the end of the third arec. Upon elimi-

nating as much as possible from this system of equations, one obtains

A - + o = bx + = constant
" p  p

and therefore, upon differentiating with respect to A ,

It is obvious that %%- > 0 ; therefcre %l;— >0 , ana the desired in-

equality follows at once.

Now it is easy to prove that for such a point 3 is the unique
minimal path., In fact, if p 1is to the right of (above) I' , a path
' from p must, by D,, begin with an N-arc which goes at least far
encugh to meet [ ; after meeting [ the path may be supposed, as in
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the proof of C, to be as described in D, . If p lies on the left of [ ,
on the other hand, this may be supposed at once. But D, says that the
shortest such path is obtained by taking the initial N';rc as short as
possible., When p is to the right of I’ , this means taking q (the
first corner) on I’ ; when to the left of I’ , taking the

vacuoue. In ceilher case, the path so obtaired is exactiy

initial N-arc
~
A,
A, B, C, ana what has Jjust been proved estsa lish Theorem 2 for
points in the open lower half-plane and on the positive half of the x-axisj;

the rest follows by symmetry.

V. THE MINIMAL THEORY: g(x,y) = x + 2by

This case corresponds to the equation (2:) of page 3, and for it the

equaticns (L4) may be written
= l-u - 2bv O (6)

We must distinguish two subecases: (i) |Ibl < 1, (ii; Ibl 2 1 ., These two

subcases display essentially different kirds of qualitative behavier.
A. Ibl < 1 (THE SPIRAL CASE)

When 1bl <1 it is well known that the P-system corresponding to
(6) consisis of spirals moving clockwise around the focus (1,0}, If b>0
the spirals move in towards the focus (which is therefore stable), while
if b <0 the spirals move outwardy, and the focus is unstable, If b =0
the spirals degenerate to a fanily of circles and the foctus becomes a
center. The N-system may be obtaine.i by transiating the P-system two units
to the left along the x-axis. It wil® be convenient to apply a linear
transformation to the variables. Iet a = +31 - b" ; then the *ransforma-

tion is
Xx=u+by , y=av (7)

This transformation leaves the axiz »f abscissae pointwise invariant; in
fact,'since it simply represents a change to an cblique coordinate system,
it leaves all the essential properties of the original system undisturbed:

PN-ccrners remain such, simple curves remain so, efc, Most important, the
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time length of a given path is not changed by the transformation. It will
therefore suffice to consider the x,y-plane onlys; any results obtained there
may be applied in the u,v-plane by invoking the inverse of (7). Under (7)
the original system (6) becomes

dx +
I -bx + ay - b
(8)
Y . _xx - by ¥
It ax - by - a
The solutions of (8) (i.e., the P- and N-curves) are given by:
x(t) = e-bt(Aeiat + Be-iat) I
. | (9)
7(t) = ie bt(Aelat - Be 1at)
where
a=3[x(0) -iy00)¥1)] . B=Z . (20)

(Here and throughout the sequel the upper sign peitains to the P-system,
the lower to the N-system,) The functions (9) represent ordinary loga-

rithmic sprials or, if b =0 , circles,

The main result for the present case is embodied in Theorem 7; but
since this is by far the most involved case to be considered, the proof

will be broken up into 2 number of parts,

Lemma 1. The length of a P- or N-arc cut off from the corresponding

kind of curve by two successive intersections with the x-axis is always

n/a .

Proof. By (9) and (10), a given P- or N-curve intersects the x-axis
when fe'® = ™1 . pcTaR or, otherwise written, when Im {Aelat} = 0.

Expanding this expression gives

(0

tan at = OB

For any but the singular solutions (the foci), the quantity on the right
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is well defined or infinite; and since tan qt takes on every such value

at intervals of n/a , the statement follows.

Now a certain sequence of points on the x-axis is to be defined, as
follows: First, take {o = 0 ., If one starts at { EO,O) = {(0,0) and
follows the P-curve from that point for the time -n/a one reaches, by
Lemma 1, a certain point ( §l.0) on the x-axis, If one then follows the
N-curve from ( 51,0) for the same length of time, one reaches a point
( 62.0). Alternately following P- and N-arcs of length -n/a in this

way, one gets the sequence ( En,O) which was to be defined,

w/ n—l /
Len]ma 2.' sn = (_l)n(enbu,a + 1 + 221 ekbn!a

Proof, By complete induction., By (9) and (10), the P-curve through

) k n=l.2.ll. .

the origin has the equations

x{t) =1 -¢ toos at ,  y(t) = e Ptsin at

Putting t = -n/a gives El =1 + ebn/a , as the formuia requires (the

n-1 . : : .
sum Zl being of course vacuous in this case. Now let it be assumed

that the formula holds for n = m ; it will be proved for n=m + 1 .

( €m+1’0) 'is the end-point of an arc whose initial point is ( Em,O), and

~ which is a P- or N-arc according as m is even or odd. Thus the equa-

tion of the arec is

-bt iat -1at) . (ul)m

x(t) = e ~ (Ae + Be

where
m+l
A=B=(-1) (£, *D .

If one combine these equations with t = -n/¢ and the assumed value of
Em , the result is

me-l.

3 Le x(~n/a) = (_l)m [ebn/a(embr/a . 22% ekbn/a) N l]

m+

which was to be shown.
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The letter ' will be used to denote the P-arc joining the origin
with ( € 1,0): by the first lemma, the length of ' is n/a .

Lemma 3. If pg R, where R 1is the set which consists of the in-

terval 0 < x < El on the x-axis and the interior of the region bounded by
this interval and [ , and if A is that path from p which is obtained
by following the N-curve through p to [' and then following [' into

the origin, 7(4) < n/a .

Proof. [t will certainly suffice to prove this for points on the axis
only. To get what we want it will be convenient to find the coordinates of

p and q by working out from the origin. The

0 p 51 equations of [' in exponential form are
r . : (11)
1 ¥t = e M), L Lt s,
The point q 1is given by these equations when t has some value -\
(0 <& < nfq):
xq =3 - % ebx(emx . e-lak) A - 52L_ ebx(elcﬂ\ _ e-iak) . (12)

Regarding q as the initial point of the N-arc pqg , the time necessary to
reach p being - p(0 < u < n/a) , one likewise obtains:

P (ae71H & gty 41

»
]

’

(13)

yp 0 = ieb"L (Ae-la.,u_ Belap.) ,

[}

where A =2(x + 1 -1 B=4.
2(q yq)’

The equation (13) implies that Ae-ia# is real. Putting its imagi-
nary part equal to zero and using (12) one gets

e sin a(M +p ) =2 sinap
Because O < au < n, the right side, and therefore the left side of this
equation is positive, This, together with the inequality O < a(A+p) < 2n,
implies O < a(\ +u ) <« n, which was to be shown.
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With the aid of these three little lemmas it is possible to start
finding minimal paths. As in the proof of Theorem 2, the procedure will be
to examine one part of the lower half-plane after arother until a unique
minimal path from every point in this région has been found; the rest will
follow by symmetry. )

One more definition: A P-path is a path which begins with a P-arc,

- an N-path with an N-are.

Theorem 3. If p is a point on the interval 0 <x <1 (y = 0),

then given any P-path A from p whichlig of 1ength.-< n/a  one can find

an N-path from p which is shorter than A,

Proof. & must be of the following type: it begins (by assumption)

with a P-arc pq . This cannot return to the x-axis, for if it did it aione
(and therefore the whole path) would have a iength 2= n/a , by Lemma 1; and
this has been precluded., From q , & follows some N-arc qr which crosses
the x-axis but, for the same reason as before, does not cross it again. (That
it does cross the x-axis once may be seen as if'ollows: it cannot stop short of
the x-axis, or on the interval 0 < x <1, for this would give a corner of
the wrong kind; and if it stopped on the axis to the right of the point (2,0),
the succeeding P-arc, by the cofner conditicon, would recessarily return to
the axis and therefore have a length = n/a .} The N-arc qr is followed by
a P-arc which must likewise ¢ross the axis at some point s . The point s
lies to the left of p , for otherwise & could not react the origin from =

without crossing itself. What & may be like beyond s does not matter.

if n= t(pq), = 1(qr) , o = 1v(rs) , then in terms of these

variables one can, by repeatedly applying (9) and (10), get the coordirate:

of the points q , r, & ; and from the resulting expressions one cbtains,

upon elimination,

a "'yo- - )\ = . P 7

X, ~ L Ee {[(xp - 1e A 2] e TH. 2} sy Y =b -~ ail (L)
q Our cbject will be to show that, by hoiding

-1 +1 p and s fixed ard reducing % to 0,
st 0P We obtain a path which is shorter than &,

For this purpose we shall prove

d

At gt )>0

(ST )

PINA
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S8ince p and s are to be held fixed, )\ can be taken as the sole inde-
pendent variable in (14); and differentiating both sides of (l4) with respect
to A leads to

d)x _ (15)

;T(x+p+a)=2

(The denominator does not vanish; for when b # O the fact that 0 <\ < n/a
implies that it cannot even bLe real; and when b = 0 it is the sum of two

_ positive terms.) This derivative is, gf course, real; putting its imaginary
part equal to zero gives F ' ' '

do bu . -ba . _ -b\

I © [2 sin au + (xp - l)e “sin a(h + p ) ] = (l-xp)e gnax . (16)

One can use this to eliminate %—g from the right member of (15) or, what

is the same, from its real part. The result so obtained is

2 sin au [2 + (xp - l)e-bk:] 2

d
—M\ +p+o) = — -
di |2 + (xp - 1)e Y)\la [‘d sin au + (xp -1l)e 2 sin a() +/-L)]

1t follows from (16) that the second term in the above denominator is posi-
tive; thus the derivative has the sign of sin ap . When u has its origi-
nal value, this is positive, since Q <X+ u +o0<nf/a. So as A is de-
creased the whole sum \ + u + o decreases, u remains less than n/a,
and the derivative remains positive., Thus we may shorten & by decreasing
A ;3 and A may be decreased without changing the topology of the situation

until one of two thirngs happens:

Z. r comes into coincidence with s . But this is impossible, for '

if it did occur the shortened path would then contain an N-arc qs which,
since it intersects the x-axis twice, is of length 2 n/a . This would con-
tradict the assumption that *{8) < n/a .

II. q comes into coincidence with p ; that is, A goes all the way

to zero. This is just what was intended.
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Corollary 3.1, If pg R (see Lemma 3), the conclusion of Theorem 3

remains true.

Proof, It is easy to see, by arguménts like those used above, that a
sufficiently short P-path from p must be
of the type pp'‘qrs... shown in the ad-

Jjoining sketch. By the proof of the theorem,
one can show that decreasing » = t(p'q)

shuortens the whole path. This process may

be continued until one of two things happens:

1 (described atove) -- which is impossible for the same reason as befors --

II'. The arc gqr comes to contain the point p . But in this case

we get a path which is shorter than the ofiginal and consists of the closed
loop pp'q‘p and an N-path from p . By simply eliminating the loop we get
a still shorter path of the kind scught.

Corollary 3.2. If p & R, any path & from p such that ©{8) <nf

which dces not begin with an N-arc intersecting ' may be replaced by a

shorter one which does.

Proof. Let q be the initial point of the first P-arc of 4. By
assumption, q €¢ R . By applying Corollary 3.1 to q , we may shorten &
by replacing q... with a path from q which begins with a non-vacuous
N-arc qq, . If q; ¢ R, there is nothing more to do; if q1€, R, the
procedure is to be repeated. Sooner or later the point q, s which iz the
initial point of the first P-arc of the path after n such modifications,
must lie on or below [I' ; for eaczh point q, iz like r' (see the last
sketch), and if all the points q, lay in R, then all the corrasponding
points like s on & would lie to the right of th= origin, which 8 could
therefore never have reached. (It should be observed that infinitely many
points Q, cannot occur; for if they did this wouid impiy *the existence of
infinitely many pieces like piqrs in A, each outside tne preceding one;
and this, as it is not difficult to prove, would imply that the iength of
the whole path & was infinite,

Theorem 4. If p e R, the unique minimal path from p is dbtained
by following the N-curve through p to I and then following ' inmto
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the origin. (If p € I' , the unique minimal path from p is obtained simply
by following [I' into the origin.)

Proof. By Lemma 3, we know that there exists at least one path from
p the length of which is less than n/a 3 thus we need consider only paths
satisfying this inequality. Then, in view of Corollary 3.2, we can further

restrict cur attention to these paths from p € R whick follow the N-curve

from p at least until it reaches ' , We shall assume that p 1ies on the
x-axis; for if the theorem is proved for this case, it will automatically-
follow for any point on the N-arc connecting p with [, and the totality

of such points is (as p ranges over the interval) R,

Let O be such a path. It begins with an N-arc pq which crosses [
but does not return to the axis, for this would make & too long. The cor-
ner q is followed by a P-are qr which crosses the axis once (it cannot
stop there -~ unless q = Q =--for this would force the succeeding N=-arc to
return to the axis, and this would again make & too long) but, for the
same reason, does not return to it. The N-arc of & from r intersects

the axis at some point s ; what & may do beyond 5 will be irrelevant.

The rest of the proof follows that of

r
' Theorem 3 almost to the letter. If one puts
-1 +1 = 1(pq) , pm= t(gr), and o = r(rs)
S

and computes, using (9)-(10) repeatedly, the

iy

coordinates of q, r, and s in terms of
X, p, o, and the coordinates of p , one

gets, after a little manipulation

X, ¥ 1=¢7° {[(xp + l)e‘y)‘— 2] e TH . 2} {y=Db - ci) (17)

which corresponds to (1L). Differentiating with respect to A , one then
gets

d ew%%“l
SOn o) e B BT
P
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(As before, the denominator does not vanish.) Again separating real and
imaginary parts, putiing the latter equal to O, and eliminating do lead
tos

do

' =OH [2 sin ap - (xp + l)efmsin a(A +pu )] = (xp+1)e-b)\sin a\ (19)

2 sin ap {(xp; + 3,)e-—b)\ . 2]2

a%(?\ tudo) = - (20).

]2- (xp +1)e 7)‘| 2 [2 ,Sin aH - (gp + l)-e"b?\sin a(a ,+;.L)J

As in the earlier proof, (19) shows that the second factor of the denomina-
tor in (20) is positive; therefore (20)'_.imp1iestthat'therderivative has the
same sign as sin ap . This quantity, however, is positive, for

O<pu< N+ pu +0 <nfa. Therefore, as N 1is decreased, so iz N +pu+ o
(i.e., the path is shortemed) and sin ap remains positive. If % is de-
creased until gq 1lies on ', so that qr contaiﬁs the origin, and if all
the shortened path beyond O is cut off, a 5till shorter path from p is
obtained, and it is exactly the path whose minimality was to be proved.

This completes the proof.

Theorem U really constitutes the first step in an inductive argument,

the whole of wnich will give th2 man result,

Theorem 5. If p is a point on thz interval |€nl < x < lfnﬂ_!,

then the unique minimal patn from p is that which consists of n + 2

arcs, the first of which is an N-arc of length A (0 £ )\ < n/a), the iost

of waich is of lengtn ¢ (0 < ¢ € n/fe), and Lhe wnterveniug ones of waich

are all of lerngth n/c . (It wii: be showr vhat a path of this kind really

exists and is unique.)

Proof. The proof wil: be by inducticn on n , n =0, 1, 4,....
Theorer 4 gives the desired result for n = 0 , where the interval is
( Eo‘ {l) = (0, El) « In this case, of z.urse, the intervening arcs of
length n/a do not occur.

The next step in the proof will be to determine the locus of the cor-

rers belonging to the paths described in the statement of the theorem., Thics

will serve us in several ways, It is. clear that the corners must be ob-



R-169
-39 ..

tainable in the following way: one starts at the origin and moves along [
{(or I'", the reflection of ' 1in the origin) for some interval cf time

- ¢(0 < ¢ € n/a), then turns onto an N-(P-) arc and foliows it fr.r 5 time
-n/a , thence follows the succeeding P-{N-) arc for the same length of iims,
and continues to follow alternating P- and N-arcs until the nt'h such has
been traversed. The ends of these nth arcs, as o ranges over its inter-
val, describe a certain curve En s whicn, I claim, is thns the locus of
-the first corners-on the paths described in the theoren. 1t is on.y heces~
isary to verif'y that this curve En is ip the right place, To uo this,
‘parametric equations for En will be derived. If the Lth corner from tnc
origin on the path described above is (xnh(c'),ynn(o~)) , where nh = 0
gives the corner on [ or T, tnen
)n+b h

x (o) = (D™« g ;v (9) = (DR, (22)

where n =0, 1,,..3 h =0, 1l,..0,.03 p = ebn/i; £ =1 - ebc Cos ao ;

' o
n =-eb sin ae., (For {h see Lemma 2.)

One proves (21) by induction on h ., The number n is really perti-
nent only in that it determines whether the path concerned begines n T

oron ['"; when n is even, it begins on I' , and when odd on [7 . Thus

n bo .antl ho |
J 2 sin ao

"
P
Q
p—
]
-
t
H
S
L)
H
]
(]
9]
o]
w
Q
q
ha—
-
o
~~
qQ
h Sy
i
—_
’._ E)

(Cf. (11), page 33.) In these equations we have (21) for h = 0 . how as-

sume that (21) holds for h = (xn m+1’y +1) is the end of the are
of length -n/a from (x 5¥, ) ard, as one can easily verify, is a P-arc
if n+m is odd, an N—arc 1f n +m is even. Thus {9) and (10) give

aer(T) = pla #B) = (1T (o) s se(s - a)

where

+ , -
xnm(a ) + (-1)n m . iynm\o')) . B = A 0

-3
it
rof
L
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If one combines these equations with (21) for h =@ , and uses

Lemma ¢, one obtains

(0) = ()™ L™ e Lie 1)

X

n,m+l m+l

- o 4me+l m+]
y'n.m+l(°.) = (-1) M

as claimed.

In particular,

x (o)~ PRLF S le'nl

—
N
p

_.n
yhn(a) =p 7

and these are the equaticns of En . Furthermore,

i

x_ (0)

(@ =161 x (n/a) - p (1 +p) 18l

It

vy (0)

/ _
nn ynn(ﬂ/a) =0

From this it is easy to see that En is a simple, semi-circie-like curve
which lies below the x-axis and whose end-points are those of the interval
i£n1 <x &€ .,l. E is, in fact, the curve obtained by magnifying I
by the factor p" and then translating the result to the right for a dis-
tance ifnl. Now it is a simple matter to show the existence and unique-
neés of the paths in question. For the existence, one needs only observe
that the path cbtained by going from p to En along an N-arc and then
following the curve which, by the avove construction, defined the peint on
En so attained, will suffice, On the other hand, any path of the tjpe
described must intersect En with an N-arc from p , and bevend this in-
tersection behave like the path just described; but, for permiszsible values
of X\ , the N-curve from p intersects En cnly onces and thnis gives the

uniqueness.



Now the proof proper can be begun. As before, one sets cut by de-
ciding how a path from p must behave., It begins, let us say, with an N-

arc of length A , where A 2 0 . We shall rmiomentarily assume:

A € r/a (23)

Thus the first arc of the path ends at a point q on or below the x-axis,
and from q the second arc qr , a P-arc emerges. The arc qr must cross
the axis, but more will be assumed:

b(2h)

The arc qr intersects the x-axis in the interval -1 | € x < - €1

The two assumptions (23) and- (2L) will be justified at the end of the proof.

Since the shortest path from p is being sought, we can also assume
(and this requires no further justification) that once the path crosses this
interval, say at the point v , it coincides with the shortest path from v,
which is given by the inductive assumption and symmetry; for if it did not
it could be replaced with one which did, and which would certainly be shorter
than the given one., For such a path, therefcre, r must be
- ! .
(An,n-l‘dr)'yh,n-l(o-)) for some value of ¢ which depends on p and X\ .
In other words, by (21),

n-1

b~
= - - | £ =
X, =P (e cos ac - 1) I,m_ll > Y. =P

n-1 h~
© " sin a0

If the length of qr is ju , then using (9) and (10) for the P-arc of
length -x with the initial point r one gets:

= ieb”'(Ae"laP--BelaF)

X = etH (Ae "4 + Be') v 1, Ty

where

R-1:69
“Ll-
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“Then following the N-curve from q for the time -\ , one gets

- - iah
- em‘(Ca ian . Deiuk 1@\ _

x De™ )

b
-1 Q= = je Ce
p ) ’ yp (

where

. 1 ~ -7
C-?-(xq+1 iyq) ., D=C .

The result of combining all these equations and using Lemma 2 is

- n-1
X, +1 =" [(pn loye | 220 pk)eaf‘ + 2] (25)

bn/a

the shortest paun from those described, which satisfy (<5). The length of

where, as before, p = e and y =b - al , Our problem is to select
any such path is T =X+ u + o + (n~1)n/a . Thus the problem reduces
to minlmizing 1 with respect to (say) X , xp boing held fixed. 1The
range of variation of X for a fixed xp iz 0 € )‘o s Where )\o is
that value of X corresponding to o = n/a . From this point on the ar-
gument will follow familar lines. The result of differentiating both sides
of (25) with respect to A\ and sﬁitably rearranging the terms is



a-l g\ do - YK
al - » (5,7 e (26)

-l k -1
2(§op )-pn e)’U

The denominator does not vanish for those values of b and o which have
been admitted. Upcon separating the real and imaginary parts of the right

member of (26), and setting the latter equal to zero, one gets:

n-leb(a- ~pj

(§-1 k) do _ Q(Zpk) e oK sin au - o
o] p dx n-i bo _,
p e sin ac

sin a(_[.l. + ) (27)

Thus the derivative '(26) exists and is continuous for 0 < 5 < n/a . Com-

bining (26) and (27) yields the final relation

dar _ 2 [h(z pk) ‘o (zpk) pn-l ebacos ac + pQ(n—l)e‘coa] sin ap
pn—l eb(U‘*/-L) k)

dA

. n-1 yoj|c¢
sin aco e 7

z{Sp

It is easy to see that all the factors invelved, except for sin ap , are
necessarily positive; therefore it is once again true that the derivative

has the same sign as sin ap . We know that sin apx =0 on E , for

En is exactly the locus of q for u = n/gno For X smaller, i.e.,
for g above En’ sin au and therefore a‘;: are negative; for A\ larger,
positive. Thus p = n/a gives T its minimum value, as was to be proved.

(For xp = A=0 and u = n/a give the oniy path from p of

IEn"’ll ’
the type under consideration; thus it must be minimal, and the assertion is

valid on the entire interval 1§ | < x < I§ _1.)
‘n , n+l

The proof will be complete as soon as the two assumptions (23) and
(24) have beer justified.

The assumption (23) will be justified by showing that any path &
from p which violates (23) may be replaced by a shorter path which sat-
isfies it. If (23) fails to hold for &, this means that the initial
N-arc of & not only returns to the x-axis (on the negative half) but
crosses it. Let v be the point at which this happens. The claim is
that if one "shunts out"™ v by means of a shcrt P-arc, a shorter canonical

path is obtained. That such a shunting can be performed follows from the

[ ¢)
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fact that at a point like v the curvature of the P-
curve is definitely less than that of the N-curve;
this may be inferred from the given differential equa-

tions. I[f the P-arc introduced is short enocugh, it

cannot cross A at any poilnts but those indicated, so
that it does not destroy the canonical nature of the
path., That the path obtained in this way satisfies

(23) is cbvious; so it only remains to show that a

shortening is truly effected.
This will foliow from the result: If p = (E',n ) , where § < -1,

is a point near the x-axis, and if » and %' are the lengths of the

shortest P- and N-arc respectively leading from p to the x-axis, then

A <>' , Namely, if the shunting P-arc is sufficiently short, then both

a and b (see the above picture) will satisfy the requirements on p ;
thus the above prorosition will imply that av' 1is shorter than av , and
that v'b 1s shorter than vb ., Taken together, these show that av'b

is shorter than avb , which was to be proved.

To prove the result stated above, regard p as the initial point of
the respective arcs. (Suppose, for the moment, that p lie:s below the
x-axis.) By using (9) and (10), and the fact that the end poirts of the

arcs are on the x-axis, one gets that the quantities

- b !
[(€-1) -inie®™ and  [(£+2)-1in] ¢
are real. Setting their imaginary parts equal tc zero gives

y = =7 = 0
tan aA :??_7~T tan a\! :}r ]

Since tan x is a monotone increasing function at points of continuit
g p 9

and since A and \' are small,

implies A< A

o/ -1
S (Y R

as was to be shown. If p 1lies above the axis, the quantities n. A,



and A' change sign, but these sign changes just cancel out to give the

same conclusion.

The assumption (Z3) has thus been justified; in what follows (the
justification of (24)) it will accordingly be assumed that all paths con-
sidered satisfy this assumption. Irn defense of (24), it will be shown that

any path for which (24) fails must be longer than f\p , the path which, ac-

cording to the theorem, is minimal. ‘

So let A be such a path. It begins with an N-arc of length X

(0 <\ € nfa) . If this arc ends at the peint q , thern @ is the initial
point of a P-arc which, by the argument adauced in support of (z3) and
symmetry, may be supposed to stop short of crossing the positive half of
the x-axis. If r 1is the terminal point of this arc, there follows an
N-arc starting at r which goes at least as far as the positive half of
the x-axis (say at the point s ). It may be that r = s . It follows
from the definition of €r1 that Ifnull <X . On the other hand, since

& does not cross itself,

<
X < xp < |€n+l
What happens to A beyond s is not cecrtain; but sooner or later., in

order to reach the origin, A must cross one of the two intervals
I | < x < 1§ | - < x <- '
€1 < {n 1§ 1< x 1€,.1

(For by arguments of the type already given, A can cross neither the N-
arc joining (- € [,0) with ( 1§__L0), nor the P-arc joining ( €,1,0)
with O-I{n_lI,O), Since these two arcs, tcgether with the two ntervals
Jjust described, form a simple closed curve surrounding the origin, the
remark made must be true.) For momentary convenience, let §(8) be the
number of times & crosses the x-axis after leaving p and bafore
crossing one of these two intervals. (E.g., N(8) = 0 would mean that
A satisfies (2h).) We next prove: if p is in the interval

‘n+l| , then

< £
|€n| <X S |

R-L69
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n: ~ (n + 1)n (28)

According to a formula on page L2

T(Kp) =\ ¢+ o +nnfa
Thus it is only necessary to get bcunds for X\ + 0 ., Upon putting g = n/a

in {25), cne obtains:

It
Xt 1= e N [2 (%pk) - pneya]

Since the imaginary part of the right member vanishes, we have

n bec . LS ky
pecrsma\)\+6)=d(2_p)slna)\
But on A , D €£x<nfaand 0 <\ + o < zn/a ; these facts and the avove

equation imply O < X + ¢ € n/a which, in turn, implies (<6).

We can say first that if N(&) > 3, then A is longer than & .
o
For when N(A) 2 3, A ocegins with a curve pqrs as cescribed above

and 5 1is folliowed by a curve sq'r's! of the same sort., If v and v!
are the points where the arcs qr and Qq'r' intersect the x-axis, ocne
can show* that each of the four pieces pqv , vrs , sq'vi , and wv'rig!
has a length greater than n/za ; and since the length of that part of A
folliowing s' is, by the inductive assumption and (28), greater than

(n - 1)n/a , the length of A itself is greater than (n + 1)n/a which,
by (28), is in turn greater than T(Zp) . Thus & is too long.

So the cases N{8) - 1 and N(A) = 2 ave the only ones left,

Congsider pgqv . If X and u are the lengths sf pg and «v re-

spectively, then working out the coordinates of v gives the equation
o 4 bx hY -
._cosa/.L-\xp+l)e COSG’.(I\“‘,LL)"l"XV

If it were true that N + u < n/2a , then the left membsr would be < &,

since cos a{x + g ) > 0, while the right member wouid be > 2, for

X, < - |§€ | < -1 . This contradiction proves the assertion for pqv;

vrs, etc,, are subject to the same argument.



When N(A) = 1, !{n_ll « X € |€n| , This, together with the defi-

-~

nitien of fn s, can be made to imply:

N = 1 -1€ e x < =lE |

?b.=00) In other words, v 13is a point like

p . only on the opposite side of
the origin. The part of A lying
beyond v provides a path from v

which (because of the assumed posi-
tion of 's ) is of the type con-
sidered in the main part of this
proof., It is therefors not shorter
than Kv » the path given by the

statement of the theorem and sym=-

metry as the minimal path from v.
It will thus suffice to prove that
the path A' obtained from A by replacing the part beyond v with A

is longer than A p° A minor modification of the argument on pages L1, h2
;3 will do it. Here we have exactly the same geametrical situation as
there, except that it is as if the curve began from the interval

l€n+1| < x, % lfn*?} while in fact p is closer to the origin. These
modificaticns do not vitiate the conclusion that g—{- ( T being the time
length of A' as a function of A = t(pq)) has the sign of sin ap .
Here, however, sin ap > O, since p < n/a . ( p= 1/a puts q on

E ;3 soif u 2 n/a , q would lie above this curve and force p to’

n+l
lie in len«*l‘ < x S |{n02l .) Thus df . o , and by deforming A' by

decreasing A (and keeping the path othgitwme of the same type) one ob-
tains a shorter path from p . The process may be continued until the
path goes through (- Iénl,O}; but as soon as this happen:. the deformed
path satisfies (24) and this, as we know, implies that it (and therefore

A itself) is longer than Ep . This was the desired conclusion.

If N(A) =2, Ifn|<x5<xp and -IEI x<—lfl,wnere
h is the next intersection after s of A w1th the x-axis. The part

of A after v, call it s, s is either (1) of the type here considered”

* Satisfying (23) but not (24)

It

R-469
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but with N(&) = 1, or (2) of the type considered in the main part of the
proof*, according as (1) - l£n+ll € X, < - l{nl or (2) - l§n+2| < xv<—|£n+ll.
{As before, because cf the position of s, v can lie no farther to the
left,) In either case, Av is longer than Kv , so that in place gf A we
may consider the path 4! arising from & by replacing Av with Av . If
- |€n ll < x < - Ifl , then A! , regarded as a path from p , satisfies
N(O&Y) =1, and therefore- is longer than Ap . If, however,

-1 Lol € x, < - !E ,1l» then by (26) the length of A' , which is greater
than that ?f Z; , is greater than {(n + X)n/a . But, again by (28). the
length of Ap is less than this quantity. This is what was to be proved.

In fact, this completes the whole proof of Thecrem 5.

Corollary. If p lies above cne of the curves En (see page LO) and

below y = O , the unique minimal path from p is that obtained by following

the path described in Theorem S which passes through p .

Prcof. (See the proof of B, page Z7.)

The time has come to say something about the sign cf the constant b ,
and the effect it has on the problem we havs been discussing. The minimal

path has been found for every point on 0< x < l§n| , N =1, 2y¢e.. Now

by Lemma 2, if p = ebn/a;!l ,
n-i n + 1
€1 = p" +2 z e1= (ot -1 2=
n p -~
Now wnen b> 0, p >1 and therefore |§nl—- c as n—-o j i.e., the
intervals I{nl < x £ I£n+ll cover the entire positive half of the x-axis.
On the other hand, when b <Q , p <1 and we have I{ | —~ l z p as
n - o, so that in this case the set of intervais IE | < X < IE only
covers O<'x<,ltz. (When b =0, p=1 and l{ I =1+2(n- J,)+l 2new.)

From this it follows that:

When b 2 O there exists at least one path from each point in the

plane,

For the minimal paths from pointe on the positive half of the x-axis
sweep out the whole plane; thus a path from any point may be obtained by
taking that part of a minimal path through the point which lies beyond it.

* Satisfying beth (¢3) and (24)




If b <0 this is no longer true. If S denotes the interior of
the set bounded by the P-are A of length n/a Joining P = (%—;—% ,O)
with -P = (- %—;—E ,O) and the N-arc B Joining the same twe points
(that these arcs exist may be verified by making a straight substituticn

in (9) and (10)), then:

When b < 0, there exists a path from p if and enly if p€ S .

We first show that there exists at least one path from each pcint
pe S . Suppose that p 1lies below the curve C made up of the arcs
En "and the arcs arising from these by reflection in the origin, If the
P-curve from p is drawn backwards (t—= -~ ), it must intersect one of
the ares En , for it surely crosses tne x-axis to the right of the origin,
. and without tirst crossing A , which
5 " is itself a P-arc, Let the first such
// point of intersection be q . Then
if one follows the N-curve backwards

(i.e., upwards) from q , one reaches

a certain point r on the x-axis. Now
the unique minimal path from r passes

through p , and theréfore that part of

_ this path beyond p provides a path
from p . The corresponding device works if p 1is in the complementary

part of S , by symmetry.

To show that no path can exist from a point outside S , we shall
show that no path can cross the boundary of § going inwards, Consider
B ; it is an N-arc, and therefore no path can cross it with an N-arc. but
no path can cross it inwards with a P-arc, for all P-curves crossing B

cross it moving outwards., Proof: By

=-bx +ay ¥bp E% = -ax - by ?a , (8)

&

the tangent vector at any point (X,y) on B has the components

(-bx + ay - b, -ax - by - a). Therefore the outward normal to B at this
point has the components (ax + by + a, -bx + ay - b} . Also by (3), the
tangent vector tc the P-curve at the same point is (-bx + ay + b, -ax - by + 1).
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The inner product of these last two vectors, which has the sign of the
projection of the second on the first, is

(ax + by + a)(-bx + ay + b) + (-bx ¢+ ay - b)(-ax - by +c) = 2y .

Since y 20 on B , this means that the projection is positive, i.e.,
that the P-curve crosses B moving outwards (except, of course, at the
ends of B , where the two curves are tangent.) This proves the assertien
made about B ; since A 1is subject to the symmetrical argurnent, the proof

is complete,

Theorem 6. If p is a point in the fourth quadrant and below the

curve made up of the pieces En (n=0, 1....), or in the third quadrant,

and if a path from p exists, then the unique minimal path from p is
that which follows the P-curve through p to the (negative half of the)

x-axis and then proceeds according to the proposition arising from Theorem

5 and symmetry.

Proof. Consider any path A from p which might be minimal. It
cannot cross any of the curves En and must therefore (having followed a
possibly vacuous N-arc and then a possibly vacuous P-arc) cross the nega-
tive half of the axis, say first at the point v . by Theorem 5, we may
suppose that A coincides with A v beyond v ., Now one snhould imagine

A extended backwards to the axis by having adaed to it the N-arc preceding

- p which connects p with the axis, say at the point p!' . The resulting

path A' is of the type considered on pages Ll-43 , except for the possi-
bilities that &' may cross itself on the arc pp' and that p'!' may not
lie in the interval in which p was there supposed to lie., Both of these
pessibilities prove irrelevant. Moreover, u  (the length of the first
P-arc qr of A' , which is also that of A ) is less than =n/a , by the
position of q . Therefore, if T' is the length <t (A') and \ 1is the
length of p'pgq (the initial N-arc of A' ), T' is a function of »

and the argument of pages L1-43 implies %% > 0 ; thus by decreasing A\
one decreases T' . (The derivative is actually discontinuous when v
passes through one of the points (- IEnI,O) during this contraction, but
Tt itself is a continuous function of X\ .) If, in particular, one de-

creases A until ¢q comes into coincidence with p and then removes p'p
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from A!' , one obtains what must be the shortest path from p , and is in
fact as claimed. , .

The main result for the spiral case can now be stated briefly and com-
prehensively. Let C denote the curve composed of the pieces:

n-1 k

2 - ebahcos ac ) + E‘p +1 , O<o<g sifa, p=ce

xn(c) - 5 bn/a

y (o) = -p % sin ac n=2,,1, 2,...

and of the pieces arising from these by reflection in the origin. C
divides the set S from which paths can be drawn into an upper and a leower
part. ( S 1is as described on page 4% when b < O , the whole plane in the

contrary case.)

Theorem 7. If p€ S and p is above (resp. below) C , the unique

minimal path from p is obtained by following the N- (resp. P-) curve from

» until it reaches C , then switching to the P~ (resp. N-) curve through

-the point of intersection, then following this curve until it retums to C,

then switching again, and so on, until the origin is attszined. (In other

terms. the unique minimal paths are obtained as solutions of (L) by taking
{x¢,y) = =1 above .C and on that part of { to the left of the origin
(within S) and ¢ (x,y) = 1 in the rest of S .)
It should be recalled that all this is in terms of the oblique co-

ordinates x and ¥y . {(Seec page 30.) The result is also valid for the

-original u and v if C 1is defined as follows: Let EO be the P-are

connecting the origin with the point ( El,O), E be the curve obtained

by magnifying EO by the factor pn and translating the result Ifnl

units to the right (n =1, 2,...), and E; the curve obtained by reflecting
. . s . N . _ x . [+ « .

En in the origin (n = 0, 1, 2’fon), then C = ((o) }:,n) J ((o)En) 0

B. |t} > 1 {THE NODE CASE)

In this case the underlying equation is again

dx'—f
I i

(6)
F=l1-x- 2y

R-L69
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but now |bl > 1 . {(The marginal case |bl| = 1 , where the singular points
8ra ao-éalled degenerave nodes, lg more clousely related to this case than

{0 the spiral case, but for technical ressons the proofs which follow donot
happen to be directly extensible to it. However, the same general line of
reascning, appropriately recaﬁt. can bé made to cover this case itoo. Because
i{he amount of i‘zcasting necessary is small, and because the case is of no
special significance. it will not be discussed in detail.)

Tae P- and N-curves corresponding to (6) when ibl > 1 are given by

thg equations

x(t) = c.\“bt(imBt + Be"‘Bt) M
(29)
y(t) =" [(o - ;acP® + (v + BB ]
where f v« b2 A- 1 and

A= o [y(0) + (0 + B)(x(0) 31)] 5 B = - & [¥(@) +L-pE@ID] (30)

The N-oystem consiste of parabola-like cuirves which tend, when b > 1, to
the point (-1,0) as t —~» o and, when b « -1 , away from it; this kind

of singular point is called a (stable or unst@ le) node. The special
straight-line solution which, with the parameter eliminated, can be written
y = -(b + 3)(x + 1) plays a special role; it will be called the major
N-geparatrix, Rough sketches of the N-system for the two signs ¢f b are
given telow. To visualize the P-system, one should imagine all the curves

moved two units to the right aleng y =0 .

U
)

‘ ("1;0)
. \ \
N -
™~

~
b >1 ' \

b <-1

y==(b~piix+1)
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(The “degenerate node" occurs when f = O ; in this case the family
of curves in the smaller sectors oounded by the linear curves collapses to
a single straight line, and all the rsmaining curves are of the type which

crosses the x-axis once.)

When b > 1 there are paths from each point in the plane; this will
become clear when the minimal paths are described below. If b <£-1, let
A be the P-semicurve obtained by starting at (-1,0) and letting t-»-Q
and let B be the symmetrical N-semicurve. A and E together bound a

certain open neighborhood S§ of the origin.

When b <-1, a path from p exists if and only if p € S .

That a path from p <can be found when p € S will be seen presently.
However, no path can enter S from the outside,
for no path can cross either A or B moving

B inwards. Consider b j it is itself an N-arc,

/ _S so no path can cross it with an N-arcj; it will
thus suffice to prove that ail P-curves crossing
B do so moving outwards. (This will prove the

assertion for B , and the corresponding asserticn
dy _ 11 - x - 2by
& v

at any point on B (y > 0) the slope of the P-curve is greater than that

. Therefore

for A will follow by symmetrv.) By (6),

of the N-curve, i.e.. of B itself; since both curves move to the right.

this means that each P-curve crosses b upwards, as was to be proved.

Lerma L. If 1 < xp <o , no path from p can begin with g_P-érc.'

Proof. For b -1 . there exist no paths at all from such a pcint.
When b = 1 , the statement is obvious for xp = 1 , for then there is no
p-are from p . For xp > 1, the P-curve thrcugh p goes dowanwards and
to the left, as can be seen from (6); if a path from p began along this
curve, it would be bound to stay con it until it crossed y = 0 , by the
condition on corners (page 2i); but such a curv: rever coes this ~-- it

tends monotonely to the point (1,0), remaining in the lower half-plane.

Lemma 5. Given any P-patn {(i.e., path veginning with a nonvacuous

p-arc) from a point p on the interval O <x <1 , one can 7ind an

N-path from p which is shorter.
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Proof. Such a P-path must behave as follows: the P-arc with which it
begins breaks off in g corner q a&above the axis, for the P-curve from p
does not return to the axis in finite time. The following N-arc crosses
the axis downwards (in fact, within the interval 0 <x < 1 ) and, for the
same reason, breaks off in a2 corner r below the axis, The succeeding P-
arc extends back up to the axis, which it meets at a point s which, since
the path cannot cross itself, must lie to the left of p ; however, s also

lies to the right of (-1,0). The situation is thus as
4:} S 0//~\jq +l sketched., It will bte shown, as previously, that when
3 ’
Tk\\\f_’// t(pg) is decreased ( p and s being held fixed),

r(pgrs) also decreases, so that in particular if gq

is brought down to coincide with p a path shorter than the given one will
be obtaired. This will be the N-path from p whose existence was claimed.
(This proof differs from the correspcnding one in the spiral case in that
there is no need here o consider the possibility that r might come into
coincidence with s before q reaches p : for it is easy to see that r
cannot come into coincidence with s at all,) If X = 7t(pg), u = t(gr).
and ¢ = Tt (rs), it will thus suffice to show that

% AN+p +0)>0

Using (29) and (30) repeatedly, one can compute the coordinates of q, r ,
and s in the usual way as functions of A , u , o , and the coordinates

of p ; from these one obtains
= hA hpe ho
X, = {[(xp -1l)e™ + 2] e - z} e +1 (31)

where h = -b + 3 . Holding xp and X, fixed, difrerentiating with re-

spect to A , and rearranging the result, one obtains

d e-hﬂ do_, 1
=N+ pu +to)=2 (32)
dA (x - l)ehx + 2
p
It is clear from the geometry of pqrs that %5? >0 ; therefore the nu-

merator of the right member of (32) is positive. That the denominator is



positive when h <0 (b > 1) follows from xp> O, hA<O0O. When h>20C
{b >+1) , the denominator is also positive; were it not, it would follow
from (31) that x, < -1, and this is impossible.

We again define [ as that part of the P-curve through the origin
which lies below the x-axis, and '~ as that part of the N-curve through
the origin which lies abcve, [ and I'" are symmetric to each other in

the origin.

Lemma 6, If p is above I' and below y = O, any path from p

which does not begin with an N-arc intersecting [I' can be replaced by a

shorter path from p wnich does.

Proof. This Lemma follows from Lemma 5 in the same way that Ccrollary
3.2 followed from Theorem 3. (See pages 3i1-36.) '

Theorem ¢. In the case g(x,y) = x + 2by , Ibf > 3 , the unique

minimal path from a point p &€ § , § being the set from which paths exisi,

is determined in the following way: Let C= T +0+ T ; C is a simple

curve which divides S into an upper and a lower part. If p is in the

upper part, the minimal path from p is that obtained by following the N-

curve from until it intersects T and then followin I’ into the
—_— T 2 i 3 - —_ - ==

origin; if p is in the lecwer part, by follewing the P-curve from p until

it intersects I'” and then following [I'” into the origin, (In terms of
$(x,¥) » ¢ should te +1 below C and on [ , -1 above C and on I'".)

C is sketched for positive and negative b below., When b > 1, as

already observed, S 1is the entire plane.

r-

b >1 b < -1

Proof. Tne theorem will be precvea by considering various psssible

positions of tne point p in the lower half-piane; the rest will foliow by
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N
- “sy

symmetry. In the picture which follows {which is drawn for Lhe case
SN and SP denote the major N- and P-separatrices respectively, and K
denotes the N-arc connecting (1,0) with [ . When b < -1, the regions
R2 . R3 , and Rh do not oceur, and much of the folilewing proof (which hzas
been written to fi*t the caze b > 1 ) is irr2levant.

AVAY

Ry

A. Suppose p € R, , this sei being take: as clozed, Let & be

e
any path from p . &y lLemma %, i’ miay be assumed that A hegins with ap
N-arc pq which at lJesst reusches I' . a2 must liz below the axis, and
the P-arc of A which begins at 5 muct eross the axis (abt cr to the lefl

of the origin); in fact, we wav =suppose; by th2 propesition which follows

i
v 7 Lt

ymmetry, that this are scackes I, Let it intersect

(0]

from Lemma & by
' at the point r . Th= *tima ;ergins of tne N-arzs pq and r0 wiline
denoted by X and ¢ respartively; tha tim2 length ol the P-arc p3
will be denoted by u . (N. (4 i5 noy claimed tnat r0  is part of Aj
this is merely an av:iliary are introduced Zor coavenience.) IY, using
(29)-(30), one computes *is cscviinatos o o . 1, and O (regarded as

the end of the N-arc rC j, ore ohtairs

2 - ce™ oM 0T (33)

TS

where h=-b+8, C= (b 8y + x + 1, The result of differentiating
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both sides of (33) with respect to o , which may be regarded as the inde-
pendent variable giving pqr0 , p Dbeing held fixed, is

a hy A
2(1+d—5) + & (ce™ - 2)

d
N tp) = —
do > _ ceDA

(34)

It will suffice to show that this quantity is positive; for this will imply
that A\ + u has its minimum value when o 1is as small as possible, i.e,,
when it vanishes; but this is exactly the case for the path claimed to be

shortest, and for it X\ + p is the length of the entire path. Since, as

usual, g}& >0, it will in fact be enough to prove

0<ef (2 -ce™ <2 (35)

from which the positivity of the right member of (3L) follows at once. To
prove (35), suppose first that h <0 (b > 1) . The first inequality of
(35), since h\ <0, would follow from C < 2 . But this is true; for
writing C ovt, transposing the 2 and multiplying both sides by the posi-
tive quantity (b + B) gives the equivalent inequality

%,+(b'+3ﬂxp-iﬂ <0 ,

which is exactly the (true) statement that p lies to the left of or on
~the major P-separatrix. The other inequality of (35), since hu < O,
would follow from C >0 which, in the same way, is equivalent with

+ (b +8)(x +1)>0
Yp ( Hip ) )

but this is the statement that p 1lies to the right of the major N-
separatrix, and this is also true. If h >0 (b < -1) , both of the in-
egualities in (35) are implied directly by (33).

B. Suppose now that p ¢ R2 , where this set is taken to include
the adjoining sections of y =0, 5 , and [ , but to exclude K . The
proof for thils case follows simply from the preceding one. in A, all

that was really used about p was that it lay between the two separatrices



B T L LT,

A gy e gy A

B L)

i TR N g

s

g

PO

e e A RO | AT T F1 1

srae e

o

R-L69
-58 -

and to the right of [° . Thus the same proof applies verbatim tc any point
of R2 to the left of the major P-separatrix. Suppose, then, that p lies
to the right of this line. By Lemma 6, it is necessary to consider only
those paths from p which begin with N-arcs intersecting [ . Any such
path must pass through the part of R2 already dealt with (it being true
that ' and SP do not intersect, for they are both P-curves); let p!,
therefore, be any point on the N-curve from p which lies in that part of
R2 to the left of SP 3 by what has been shown, the shortest path from p°
is of the type claimed; therefore the shortest path from p , consisting as
it does of the N-arc pp' and the shortest path from p' , is again of the

type claimed.

C, Suppose, finally, that p ¢ H3 + Rh + R5 , this set being taken
open. By what has already been proved, we need to consider the following
tvpe of path only: it begins with an N-arc (which, if p © R3 , must cross
I’ but may otherwise be vacucus), say pq . Frem q the path follows a
P-arc qr at least to the axis y = O and thence, by the results symmetri-
cal to A and B, to [, which the path then follows into the origin,
Thus we are now considering paths pqr0 as treated under A (where pqr0
was not in fact the true path considered), except that p is now in a dif-
ferent place. So (33) also holds here, but now X + p + o is the actual
length of the path being considered. 5y the usual argument, it will thus

suffice to prove
adi-()\'l-y_-ij’))o s

p being held fixed. In fact, the differentiation of both sides of (33)

with respect to X , followed by a rearrangement of terms, gives

~hu do
i(}\‘f’_. +0'):2e d)\+l
dx 5 - Cehl
Again, it is evident that %g} > 03 thus the numerater is positive, That

the denominator is positive follows (when h <O ) from the fact that p

lies to the left of S, or (when h >0 ) from (33), as or page 57.

P
This completes the proof of Theorem 8.



VI. THE MINIMAL THEORY: g(x,y) = -x + 2by; SUMMARY

‘The only linea., case yet unexamined is that corresponding to equation

(2"') of page 3; it arises when g(x,y) = -x + 2by , and represents the

physically improbable situation that there occurs not only the usual velocity

damping, but also an "output damping" in the direction opposite to that

wnich characterizes ordinary (simple or damped) harmonic motion.

The equaticns with which we have to deal are therefore

dx dy

+
T=Y dt=-l+x—2by .

The P-system cerresponding to tnese ecuations consists of hyperbola-like

curves for winich the point (-1,0) is a saddle point, the separatrices being

the lines

y=(b¥8)(x+1) , 6=4/b°+1l>Db .

Note that irrespective of the sign of © the two separatrices have slopes
of oprosite sign. 1In fact, the value of b plays no role at all in de-
termining the qualitative behavior cf the curves. This fact, together with
the experience derived from the preceding sections, enables cne to dispatch
this case rather swiftly.

« sketch of the P-system is given below., The N-system ‘s similar,
only moved two units to the right. The P~

and N-curves are given explicitly by the equa-

\\\“"///// tions
\t\ x(t) = e.bt(Ae5t + Be-st) 1

y(t) Pt [(b - é)aeﬁt + (b + S)Le-ét]

léﬁi:::::::§> whele A and @ ure given by

ST yviG) + (b + &) [:J.(u,' - l]} s £ = - % y{i; + (b = &) [X(U):-L]}-

o SN

[T T
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We first note that a path from the point p exists if and only if

p lies in the strip bounded by the parallel lines y = ~(b + &)(x - 1) .

To get the necessity it will suffice to show that no path can cross
either of the bounding lines into the strip. Consider the line
y=-(b+8)(x+ 1) ; it consists of two P-curves, and therefore cannot
be crossed by any P-curve whatsoever. Moreover, by the relation which
subsists between tne slopes of the P- and N-curves at a point, it can be
seen that N-curves always cross the line going out of the strip. Thus no

path can enter the strip along this linej the same
holds for the other becunding line by symmetry.

That there do exist paths from any point within

(-1,0) the strip will be seen below.

Now let '~ be, as before, that part of the
N-curve through the origin which lies above the
x-axis, [ that part of the P-curve through the
origin which lies below. C = T +0 + [ is
again a simple curve which divides the strip defined above into an upper

and a lower part,

Theorem 9. When g(x,y) = -x + 2oy , b % O , the unigue minimal path

from any point p in the strip bounded by the two lines y = -(b-+6)(x:t1)

is given as follows: if p lies above C (see the preceding paragraph),

by following the N-curve from p to I and then following I into the

originy if p lies below C , symmetrically.

Procf. The proof is mu:h iike previous ones; so much so, in fact,
that it is not worthwhile to give it in complete detail. The essential

things to prove are:

(i) Given any P-path A from a point © on the interval 0 < x <1,

one can find an N-path frem p which is shorter than 4.

From this follows, as in the derivation of Cerellary 3.2, that for
any point p below y =0 and abeve ' Yand, of course, within the
strip) it is only necessary tc consider paths from p which begin with N-

arcs intersecting T ,



{i1) The unique minimal path from a point p on the interval
C <x <1 1is cbtained by following the N-curve from p to [ , and

then fcllowing [ into the origin.

In view of (i), to prove this it wili suffice tc show that any
path from p which intersects ' with its initial arc, an li~arz, is

longer than the cizimed minimal path 2f it doesn’'t coincide with it.

Now iet p be any point below the x-axis and within the striu,
and let A ve a path from it. A btegins with an N-arc of length 2\
which, if p is to the right of [ , must go as far as [ , but other-
wise may be vacuous. There follows a P-arc gr with q below the axis
which must intersect the axis at exactly one point. This point of inter-~
gection, in fact, lies on the interval -1 < x €0, so that the result
arising from (ii) by cymmetry implies that we may suppose that r lies on
['". and that the rest of the path A is cdbtained by following I'~ from
r to the origin. Such a path is thus uniquely determined by X\ {p being
fixed), and may be written Arﬁk) » To complete the proct for the lower
half-plane (the rest will follow by symmetry) it will therefore suffice te

prove:
(iii) The length of Ap(R) is a strictly increasing functiocn of X .

Proof of (i). By the usual reasoning, onc can see that A must

begin with an arc cenfiguration like that shown.

//A\ then we want to prove
S

0 \p SN+ +0)>0 .

dx

Computing the coordinates of the corners, elimi-

»
1

nating superflucus variables, and simplifying,

one obtains

{[kxo + 1)ehx - 2] .7 2}_eha_ i,

>
]

where h = &6 ~b>0. If p and s are held fixed and both sidec cf

this equation are differentiated with respect te X\ , one gets

q If A= t(pg) , # = t(gr) , and o = 7(rs),

R-L69
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e—h,u. do .

aN

dx .

nA
¢ - (x_+ e
P

irce —— >0 , the numerator is positive. The denominatur is alsc posi-
tive, for if it were not the above eguatior for x_ would make x_ >1,
(o] p=)

and this 1s impoussible,

Preof of {ii}). Let A be any psth from p O< x < 1,y =0) .,
= 1 P
435 cbscrved, we need consider £ only if it begins with an N-are pq

which intersects I . The point q 1is followed by a P-arc qr which,

y (i) and cymmetry, may be cupposed to cross or end en | . If the point

at which qr intersects [~ is v , we shall consider the "virtral" path
£

pevld instead ¢f the true path A - por...0 ; fer If it can be shown that

7{pgv) 1is a strictly increasing function of » = r{pq) (or, equivalently,
of o - T(v0)), (ii) will follow as “n A, pages 56-57.

Again computing the cocrainafes of thz cornerz q , v, ard O

{0 vueing regaried as th: erd of the arc v0 }, ard 30 cn, ora gets

- h~ -7 ; i
(x_ - i)™ +231s?h#§2 e T {337}
where X = T{pa) , g - T{qQV) , and & = T(vG) . This is exactly squa-

: N - . i i )
ticn {33), page 56, with C = i - x_ 5 thersfore to got i p) >0

which is what is needed, it will suffice tc prove:

SN N

<2 e et o= (x -1 tE<2,

<

The second irequality is obvious, =ince x_ < 1 ; the fir-:t fecilows from

(337

~

and h >3,

COAY s

Proof of {iii;, & (x} ir exactly like the "virtual" path pqve

eNe

dezcribed abave, except for the faot that p no “onger i‘es on *the

x-axis. The equation corresponding to {33') is

2o~ Keh'\' e-'h'u' ("

.
~
Y

~~
~ 2
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— A 3 = e + =
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The numerator is again positive; that the denominator is positive follows

from (33") and h >0 ., This completes the whcle proof.

SUMMARY OF THE MINIMAL TdECRY FOR gx,y) LINEaR

It was pointed out on page 2 that the eguation {Z) can always be

cwritten in one or the three torms (2')-{¢"'). In terms of the problem

L]

treated here, this means that when g{x,y) 1is linear cre may suppcse

that it has one of the three forms (i) g(x,y) = by ; {(ii) g{x,y)=x+2by;
(iii) g(x,y) = -x + 2by , where b is an arbitrary constant. The prcblem
has now been ccmpletelyv sclved for ail three cases, and therefore for (2);
the solution for (i) is Theorem 2 (page 26); for (ii), Thecrems 7 {page
51) and 8 (page 55); for (iii), Theorem 9 (page 60)." A1l these results

may be summarized in the following form:

Theorem 10. When g(x,y) 3is linear, the points from which paths

exist for the corresponding system

dx d
QTE =Y [] a% = ¢ '/-"':0:‘7) = gb(vY) ()J,)

form a certain connected cpen set S containing the crigin. There exists

a unique simple curve C passing tarough the origin wnich divides § into

1 above C and on

-1 in the rest of

an upper and a lower part, and such that if ¢ (x,y)

]

the part of C to the right of the origin, ¢ (x,¥y)

S , then the solution curve of (L) from any point p € S is the urnique

minimal path from p . The set S and the curve £ can be expiicitly

described wnen g(x.v) 1is given.

Briefly, the probiem stated at the betiom of page 3 hac, when g(x,v)
is linear, a unique solaticn which can te cxplicitly described., This is

the central result of this paper,

" The physically important cases are (i) and {ii) with b 290 .
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VII. g(x,y) NONLINEAR

When it becomes necessary to attack a problem for which g{(x,y) is
nonlinear, the most one should hope to be able to carry over from the last
three sections is a few partial arguments and a point of view; for nearly
everything that has been done for the linear case depended rather heavily
on having explicit expressions for the P- and N-curves, and this is natu-
rally out of the question for most nonlinear equations. Hcwever, some cf

the arguments which have been used did not really rely on those explicit

expressions, and may be assembled in various ways to yield results under

more liberal hypotheses. An example of such a result is given in Part A

below,.

In general, each nonlinear problem is likely to require a separate
treatment, and usually a qualitative and partial discussion is the best
one can legitimately expect. Such a discussion for the interesting case
in which the F- and N-systems each contain a stable limit cycle of the re-

laxation oscillation type is given below in Part B.
A. g(x,y) INDEPENDENT OF x

The results of IV (where g(x,y) = by ) for b €0 really depended
only on the qualitative behavior of the solutions, and can therefore be

generalized; one such generalization iss

Theorem 11. If (1) g(x,y) has the following properties:

(1) g(x,y) is independent of x ; i.e., g(x,¥) = £(¥) ;

i) f£(-y) = -£(y) ;
@ii) £(-K) =1, f(y) <1 for |yl <K, K being some positive
constant;

and if (2) R 1is the open strip bounded by the two lines y = ’K 5 then

there exists a unique minimal path from any point p € R, determined as

in Theoren 2.

Examples., Some functions satisfying (i)-(iii) are: g(x,y) = Cy ,
=1
C<O,n=1, 3, 5,0.0, K=-2¢ 1/3 ;5 g(x,y) = -sin(ey) (K = n/2a) .

Proof. The assumption (i) implies that any P-curve can be obtaired
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from any other by translating it along the x-axis; (ii) gives the condition
for symmetry, as discussed at the end of III. The crucial assumption is
(iii). The P-curve through the origin (which will be taken as a typical
%%=y, g%= 1 - f(y) . At the origin
the motion is upwards and, as it leaves the origin, tending to the right.
By (ii) and {(iii), f£(X) = -1 ; therefore f(y) < 1, and the function

P-curve) satisfies the equations

1 - f(y) attains a positive minimum € , on O <y <K ., From this, by

the second differential equation,

t
y=f 1 -2y dtae(t-to) (0 € v £KX)

t
0

where to is the value of the parameter representing the origin. But this
means that for some value of t (e.g., t = to + K/e ) the curve will
have crossed the line y = K . Thus the P-curve through the origin moves
monotonely upwards and to the right from the corigin until, after some

finite interval, it intersects y = K .

By applying a similar argument to any interval -K + 0 £y €0
(0 < 8 <K), we see that the curve must cross each line y = -K + & as
t -+~ ~-o» and must therefore come arbitrarily close to the line y = -K .

But it cannot cross this line, which is itself a P-curve, Once the curve

has crossed the line y = -K + 6§ (for decreasing t ) it must remain
within the strip -K <y< -K + &, for (d—i% =1« f(y) >0 in this strip.
Moreover, since % =y <K +8<«< 0 1in this strip, the curve goes in-

finitely far to the right as t—+»-cc ,

Thus it stands verified that the P-curve through the origin, and
therefore 211 P- and N-curves, have exactly those properties of P- and
N-curves used in proving Theorem 2 for b < 0 ., The proof of that theorem,
accordingly, can be applied directly here, and gives the result stated.

Corollary 1l.1l. The conclusion of Theorem 11 remains true if one

replaces (iii) and (2) by:
(iii') f(y) <1, for -w <y <@;

(2') R 4s the entire plane .

R-U59
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Proef. Everything is as before, except that now the P-curve through
the origin goss strongly to infinity in the sense that if x(t) and y(t)
represent this curve, x(t) — o and y(t)—» -0 as t-—+ - , while
x(t) = o0 and y(t) ~o as t . The curve thus bshaves qualitatively
like a parabola with its vertex at the origin and y = 0 as its axis. The

proof of Theorem ¢ for b = O consequently works here.

Corollary 11.2. [The conclusion of Theorem il remains true if one

replaces (iii) by:

(iii") f(-K} =1 and f(y) <1 for 1iy] < ~K, K being some

negative congtant.

Proofs In the same way that Theorem 11 corresponds to Theorem 2
with b <0 , this corresponds to Theorem 2 with b > 0 . There is the
difference that Theorem 11 accounis for all the points from which paths
exist, while for a function satisfying (iii") thsre may very well exist
points outside the strip |yl < -K from which paths do exist but for which
no minimal paths are described, (Indeed, this happens when f(y) = by ,

t > 0 , as we have seen.) The reason for this incompleteness is that it
was at just this stage in the proof of Theorem 2 that the explicit formulae

for the P- and N-curves were used.

B, LIMIT CYCLES

When g(x,y) is noenlinear, limit cycles can occur among the P- and
N-curves, As is well known, the close study of these limit cycles --
especially as regards their exact quantitative characteristics --- presents
great difficulties, The object of this discussion will be to show one way
limit cycles can occur in a manner relevant to our problem, and then to say

sometning abcut the corresponding choice of ¢ (x,¥).

We shall consider the generalized van der Pol equation

2
d dx
d';%*f‘f(")d—;*xzo (36)

where f(x) ¢ Cl and u 1s a real, positive parameter, If G(x) 1is
defined by
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> H
G(x) = -ff(u)du ,
o
then {upon putting t = pr ) the equation {3€) can be written
dx d 1
a-f = G(X) -y ‘C% = E X o
In this situation a theorem due to LaSalle (LaSalile {1)).states that:
If there exist four numbers a; < a, <0 < ay < g such that
(2) G(ay) = G(s,) and G(a,) = G(a)) ,
(b) G(az) < G(x) SG(aB) for als X sah , and
(c) G'(al) < 0 and G'(ah) <0 ,
then for u > p,> 0 there exists a unique stable iimit cycle in a
certain neighborhood of the curve H (see the figure); as u— o , i
the limit cycle converges to H . '

What we are really concerned with is

y
not (36), but rather the zorresponding
‘\\Q(x) equations
N\ 2
K a ”-:\a d—-)ﬁ-r,u"(x‘-d—}si-x=-f~I (37)
{ 2 0}7 P x qr 2 M odr - -
T \
al : /// 8.3 :
L =\ Because of the nonlinearity, the
\ existence of a periodic solution of (36)
does nct guarantee the existence of a

periodic soclution for either cf the equa-
tions (37). What one would like to see happen. however, is that there
occur a P-limit cycle lying slightly tc the righ* of the c¢rigin and an
N-limit cycle slightly to the left, so that each could act as a "big
focus" and the curves ' and I'" , defined as in the spiral case (s2e

page 33), would be spiral arcs acting as they did there.” One would ther

-y centaining th

* i
One could also seek P- and N-cycles =ach just barel e
3 this would lead tc

origin at its left or right extreme respectively
considerations similar to those which follow.




R-469
- 68 -

suppose that the minimal paths from points in some neighborhood uf the
r- origin would be obtained by taking ¢ (x,y)=+1

mm above C andon [ , -1 below C and on I~
m within the neighborhood. Indeed, the very pur-
\_J M pose here is to imitate the spiral case, having

r limit cycles in place of foci.
c=I"+0+7T If we put x=u:l, (37) becomes
d.2u + f( + 1) du + =0 . 6+)
g2 tefas g s ; (36

and this is subject to LaSalle's theorem, Putting
U
Gsy(u) = -f f(v 21)dav
o

one gets the functions G+l(u) and G_l(u) corresponding to G(x) for
the P- and N-sys.ems respectively. It is easy to see that the curve of
G_l(u) can be obtained by moving that of G+l(u) two units to the left
along y = 0 and then raising or lowering it until it again passes through

the origin,

It follows from LaSalle's theorem that both the equations (36:) will
give limit cycles in the u,y-plane ( y being as above, and not identified
with g—}: as previously) as described when u .is sufficiently large if
each of the functions th(u) satisfies a set of conditions (a)-(c), i.e.,
if their common curve has the general shape of that in the following figure.

If ua (the abscissa of the point a

y with respect to the u-axis) satisfies
\\ ua > -1, then for a given € > 0 ard

a&_‘7'\H+1 u csufficiently large the limit cycle

\.i_j\b u y corresponding to H a will have its left
c“ ~H extreme point p on the interval
(\__/1 Lo o-1< u < u, + €. Similarly, the limit

= X d cycle corresponding to H_; will have

\ its right extreme point q on the inter-

val vd-e <vq<1,if vd<l.

—— ] L] L] ] ] [~ [ ] [ A




The function wu(t) which represents the 1limit cycle corresponding to
H+1 is thus a pericdic function whose minimum value lies in the interval
(—l.ua+ € ). The correspending P-curve (in the original x,%%-qﬂaae) for
(37) is therefore a limit cycle whose left extremity lies on the interval
(0,1 + u *t € }3 this point must lie on the x-axis because %% =y7 0 off
the axis. This limit cyzle is consequently
Y = F of the kind illustrated, as was desired. An
| N-1lirit cycle of the corresponding type on the

other side of the origin is obtained in the

m .
TUFE
\3;~ii//// same way.

It is not certain that these limit cycles

are the only ones in the P- and N-systems, or

even tnat they are the only ones passing
threugh a prescribed neigﬁborhood of the origini but when they are, the P-
and N-curves behave near the origin in the manner described on the preceding

page.

In order for all this to happen, the function G+l(u) must have four
relative extrema, and therefore f(x) must have at least four zeros and be,
if a polynomial, of degree four or higher. (A simple transcendental functim

which has the necessary properties is
f{x) = n cos nx + cx ,
where c 1s a constant which must be properly chosen; it gives

G+1(u) = sin nu - cu ,

a function whose graph is of the type shown.)

It was once thought that the introauction of such limit cycles might
make for better response of the system in the vicinity cf the origin than
linear systems could provide; that the presence of the limit cycles might
accelerate tne motion along the P-- and N-curves nearby, But this violates
our basic principle (wnich, to te sure, has not been rigorously demcnstrated)
that the best control snould be that which uses the full magritude of the

avaiiable control force at all times; for if a certain amcount of force is

R-L69
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available to be put into the first order term in (37), it would then be
better to take it at its full strength and combine it with the contrcl
force already present {in the form Il) on the right-hand side, than to

use it partially and continuously in the form of the function u f(x) %% .

However, if an equation like (37) is dictated by circumstances. and
the functicn f(x) cannot be aitered at will, a discussion of the above
sort must be undertaken. In the case which has been considered the limit
cycles occur in what, from the standpoint of tractability, is probably
the simplest way; but even so it is complex enough. But even when such a

discussion can be carried out in sufficient detail, it is still only

prefatory to the treatment of the problem actually at hand, that of finding

the minimal paths. Except for conjectures based on analegies with the

iinear case, nothing whatsoever has been discovered along these lines.

umh S [ [ () el [ — ] [ =] vl ol ol
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APPENDIX I. VELOCITY CONTROL

In section II a description was given of the conclusions reached in
previous investigations of the behavior of the solutions of the equation

2

d“x dx - pix, &
SGemFexc sog) (0 <b < 1) (21)

when ¢ (x,y) is of the speciai tyre ¢ (x,y) = sgn{Kx + My) , K and M
being constants. The same group cf investigators has also studied the
Similar problem in which the control force has a derivative like this; i.e.,
the problem associated with tne equation

2

x+2b3—’€+x=w (0 <b <1) (38)

QJQ
ct

where  1is a continuous function of t and, at points where
Kx + My + Ny # O, satisfies '

I

&g

da% = sgn(Kx + My + Ny ) y (39)

K, M, and N being ccnstants.

In the former problem, ¢ along any soiution was & step function al-
i +
ternating between the values -1; here  along any solution is a continuous
+
"sawtooth" function whose graph consists of linear pieces of slope -1. Such

a system (called velocity control) has the practical advantage that, without

being essentially more difficult to design, it gives a smoother operation.
This, in fact, is its principal virtue; it does not claim to give, for a
bounded control force, a rapidity of response comparable to that of the dis-
continuous, "position control" arrangement which has been discussed., §till,
one might consider the problem of replacing the function sgn( Kx + Mg%'f Nq,)
by a more general functicn of (x, g—%, 4/) which takes on only the values

+
-1 in such a way as to obtain minimal paths in the (x, %-\'/) -space and

*
The appendices deal with questiocns which lie outside the domain proper to
the main text, but which nevertheless are of a kindred nature and should
be discussed for the sake of ccmpleteness.
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thus the most rapid response within the limits of the system. This problen
has not been touched. What has been done (the most recent account is in
Fligge-Lotz (2), Chapter 5) is to make a graphical study of the solutions
of (38)-(39) after the manner of that described in section II above. The
several cases that occur corresponding to the different possible combina-
tions of signs on the constants K , M, and N are given separate treat-

ments,

The technique used to implement tne investigation is first to intro-

duce the auxiliary variable

y(t) = x(£) - ¢ (t)

and to consider solutions in the (y, %%. w) -space, where they consist
y

cf arcs whose projections in the (; —%) -plane are arcs of logarithmic
spirals. Then the solutions are considered in terms of theilr projections
in this and a certain other plane, whereby all the desired information can
be obtained. One again encounters end points, start points, periodic solu-
tionz, etc. It may also happen that a solution has a last corner beyond
which it moves off to infinity; the purpose of introducing the term in
in the argument of the signum function is to avoid this phenomenon, Fur-

ther details will not be given here, )



APPENDIX II. MULTIPLE MODE CONTROL

Those interested in the practical applications of the theory for the
case in which g(x,y) is linear will have noted that the subject of time
lag was ignored in III-VI. The present appendix will have something to say
about this and related matters.

It is easy for one to convince himself that the systems of minimal
paths discovered in those sections (and summarized in Theorem 10, page 63)
are "structurally stable with respect to time lags™ in the sense that the
presence of a sufficiently small time lag does not affect the essential
over-all behavior of the solution curves. This follows frem the fact that
the time length of the minimal path from a point depends continuously on
the position of the point, from the character of C with relation to the
P- and N-curves, and so on. In fact, the only place where a small time lag
can seriously mar the qualitative situation is at the origin., There a time
lag has the effect of causing a solution to overshoot the origin slightly
instead of ending there, have a corner, overshoot in the reverse direction,

have another corner, and repeat the act indefinitely. (Cf. page 16.)

Perhaps the first means of avoiding this which suggests itself is that

of slightly altering the curve C so that the time lag is anticipated and
pre-corrected; but this is not really feasible, for the time lag is a com-
plex and variable thing which cannot be predicted précisely or be expected
to be always the same. Indeed, the assumption that a time lag is simply a
clean, sharp delay in the occurrence of a corner is itself a considerable

distortion of the real state of affairs.

Far better is the plan of disconnecting the control entirely as soon
as the solution has entered a satisfactorily small neighborhocd of the

origin., and replacing it there either by a control of a different sort, or

by no control at all, letting the system run free.

If. for instance, the system in question is given by the equation

2
d dx +
j+2ba+x=-l , (0 <b <1)

+
when the control force -1 1is removed the scluticn curve spirals into the

R-L69
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origin. (The very function of the control force :l is to accelerate this
process.) If, therefcre, the mechanical system is so designed that the
force represented Ly I1 is switched in accordance with Theorem 10 (page 63),
except that in some small neighborhood of the origin in the x,y-plane

(y = %%) it is remaved entirely, then a typical solution curve would be-
have in the tollowing way: it would move rapidly in from its initial point
and then, having passea through a finite number of corners (in any but the
spiral case, at most one) it woula enter the neighborhood mentioned; once
this had happened the solution would spiral gently down to the origin. In
the presence of a time lag the solution curve would not behave differentliy.

This arrangement has the valuable properties that:

1) it reduces any errcr, together with its first derivative, almost
to zero very rapidiy., and thus accomplishes the purpose of the system

within arbitrarily small tolerance limits:

2) it prevents high-frequenc: oscillaticns back and forth around the

origin such as would occur in the presence of a time lag otherwise;

3) it prevents the system from being hypersensitive to trifling dis-

turbancesfrom the zero-error s*ate.

Such an arrangement gives what is called dual mode control; this is
what arises in the conventional theory of servomechanisms when the feedback
circuit has a threshcld of sensitivity below which it gives no output at
all, (See for example the Appendix in MacColl (1).) In the context of our
minimal theory, its prinecipal interest lies in assuring the mathematician
that conclusions reached disregarding time lags need not be utterly useless
when confronted with practical demands. but the problem of choosing the
#right! dual moue arrangsment in a particular situation is not a mathemati-

cal one.

In general, a multiple mode control might be defined as a contro.i
system in which diffzrent kirnds of control are to be applied in different
parts of the phasc plane. Such arrangements are frequently desirable when
cne or more of the assumptisns underlying the problem stated in I fail, An

instance of thiz is discussed al some2 length in the rex® appendix.
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One should perhaps include with multiple mode controls those subject
to special restraints of various kinds. Fror instance, 1t may happen that
physical limitations prevent the magnitude of the derivative of the con-
trolled variable (in terms of the example of page 1, the angulai speed of
ihe motor) from exceeding a certain value, K , so that any solution must
be contained in the horizental strip |y| € K in the phase plane. In this
case there is a multiple mode contrcl in the sense that the contrcl is not
meaningfully described at all cutside the strip; if a path reaches one of
the boundaries of the strip {necessarily from the intericr) it must follow
this boundary for some distance in the prope. direction and then return to
the interior and, eventually, the origin., It is easy to see that for the
case in wnich g(x,y) = by the curve C should pe the same (within the
strip |yl € K ) as if y were unconstrained; what happens in more com-

plicated cases, for example the spiral case, is not clear.
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APPENDIX ITI. COULOMB DAMPING

The whole problem with which we have dealt derived much of its im-
portance from the assumption that the best behavior (in terms of response
time) should be obtained from a servomechanism when the £ull strength of
the power source is used; but this "full strength® may vary for different
states of the system, instead of remzining constant as we have supposed.

In this appendix such a case will be discussed.

In terms of the example of page 1, it may be possible to apply to
the motor a second control force in the form of "Coulomb damping,™ which
is characterized by being constant in magnitude but opposite in sign to
the derivative of the output; the equation for the system could therefore
be written

Iz—-i-’ei+ng—§=x-f{x,g?ti) -C-h(x,%)-sgn(%—x{) , (40)

where everything is as in equation (1), page 1, except for C , which is

dx
x,d—t
anrd O and represents the instruction from the control as to whe*her or nct

some positive constant, and h ( ) , which takes on only the valuves +.
the Coulomb damping is to be applied at any particular time., The right hard
member of the above equation can be written simply F (x,%%) s where this

function assumes only the values

K, K, K~-C, -K-¢C (for %’f:>o)
K, =K, K+C, -K+¢ (for%f:<o)
K, -K (forj—’ff_v—o) .

Now the natural question to ask is: How should F be chosen so that all

solutions of (L4O) will go to the origin in the x.,y, (= %%) -plane in

minimum time? If the assumption mentioned above is valid, it should again
be true that best results can be obtained by using only the extreme values

s

cf F available at any point., This is equivalent to saying that &

>

This problem was recently suggested to the writer by Professor L.i.. kau~h,
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3
assumes only the values

K, -(K+C) (for gx_z >0)  and
K, K+¢C (for & <o) .

This problem is mathematically equivalent with that which arises
when it is assumed that the Coulomb damping is applied uninterruptedly,
i.e,, that h = +1 , and that C < K j; in this case F takes on only the

3¢
values

dx .
K~-C, =K - C (for It > 0) and
dx
K+C, -K+C (for & <o) .

Both problems are special cases of this one, which is a generallza-

tion of the problem on page 3:

Eg; the equation

2

s g (08 = (s ;

52 g(x'dt P ("'dt) (L)
with g given and ¢ a function which is allowed to take on only the
values a , -8 (ggg %%‘> O) y =a , B (ggg %% <IO) (a and 8

being positive constants), how should ¢ be chosen so that every solu-

tion of (L1) reaches the state x =0, = 0 in the least possible

al&

time ?

The problem will be discussed here for the simplest case, g= 0.

This gives the system, equivalent with (L1),

.y, He b @

What happens for %% = 0 turns out not to matter; the sclutions mar be
defined so as tc extend across this axis as if F had the same values
there as in a contiguous part of the plane.
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Instead of talking about P- and N~-curves, etc., we now speak of a, 8,

~a , ~8 ~curves, etc. The considerations of sections I and IIT carry over
in full, although the definiticn of solution (cf. pages 6-7) becomes even
more awkwards in particular, Theorem 1, which states in effect that one
needs to consider only canonical paths, still holds, where a canonical

path is new defined as one which has no (-8)(a)-corners above y = O and

no (8)(-a)-ccrners below. All this helds for any g € C .

The a-curves for (L42), in parameter-free form, are

y2 = 2a(x + k)

< k <o)

and similarly for the other three values of ¢ . These are of course

parabolas with y = O as their axis. If [ is that part of the 8-curve

through the crigin which lies below the x-axis, and [~ is that part of

tne (~p)-curve through the origin which lies above, then by trivial exten-

b - -8

sions of the methods of IV (pages 26--28)

one gets that the unique minimal paths are
obtained by taking ¢ as shown, with ¢ = 3
on [, ¢-=-8 onT,db=a or 38 on
the negative half of the x-axis, ¢ = -a

or -B on the positive half. In fact, the
analogous results for g(x,y) = by . b # 0.
can also be proved in the same way. The
problem focr g less simple has not been

studied.
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